Upload 6 files
Browse files- Boat_dataset.py +103 -0
- README.md +89 -0
- data/instances_train2023r.jsonl +0 -0
- data/instances_val2023r.jsonl +0 -0
- instances_train2023r.jsonl +0 -0
- instances_val2023r.jsonl +0 -0
Boat_dataset.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Source: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
|
2 |
+
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@InProceedings{huggingface:dataset,
|
11 |
+
title = {Boat dataset},
|
12 |
+
author={XXX, Inc.},
|
13 |
+
year={2024}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
This dataset is designed to solve an object detection task with images of boats.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = "https://huggingface.co/datasets/cj94/Boat_dataset/resolve/main"
|
22 |
+
|
23 |
+
_LICENSE = ""
|
24 |
+
|
25 |
+
_URLS = {
|
26 |
+
"classes": f"{_HOMEPAGE}/data/classes.txt",
|
27 |
+
"train": f"{_HOMEPAGE}/data/instances_train2023r.jsonl",
|
28 |
+
"val": f"{_HOMEPAGE}/data/instances_val2023r.jsonl",
|
29 |
+
}
|
30 |
+
|
31 |
+
class BoatDataset(datasets.GeneratorBasedBuilder):
|
32 |
+
|
33 |
+
VERSION = datasets.Version("1.1.0")
|
34 |
+
|
35 |
+
BUILDER_CONFIGS = [
|
36 |
+
datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."),
|
37 |
+
]
|
38 |
+
|
39 |
+
DEFAULT_CONFIG_NAME = "Boat_dataset" # Provide a default configuration
|
40 |
+
|
41 |
+
def _info(self):
|
42 |
+
return datasets.DatasetInfo(
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
features=datasets.Features({
|
45 |
+
'image_id': datasets.Value('int32'),
|
46 |
+
'image_path': datasets.Value('string'),
|
47 |
+
'width': datasets.Value('int32'),
|
48 |
+
'height': datasets.Value('int32'),
|
49 |
+
'objects': datasets.Features({
|
50 |
+
'id': datasets.Sequence(datasets.Value('int32')),
|
51 |
+
'area': datasets.Sequence(datasets.Value('float32')),
|
52 |
+
'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)), # [x, y, width, height]
|
53 |
+
'category': datasets.Sequence(datasets.Value('int32'))
|
54 |
+
}),
|
55 |
+
}),
|
56 |
+
homepage=_HOMEPAGE,
|
57 |
+
license=_LICENSE,
|
58 |
+
citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
# Download all files and extract them
|
63 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
64 |
+
|
65 |
+
# Load class labels from the classes file
|
66 |
+
with open('classes.txt', 'r') as file:
|
67 |
+
classes = [line.strip() for line in file.readlines()]
|
68 |
+
|
69 |
+
return [
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.TRAIN,
|
72 |
+
gen_kwargs={
|
73 |
+
"annotations_file": downloaded_files["train"],
|
74 |
+
"classes": classes,
|
75 |
+
"split": "train",
|
76 |
+
}
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
gen_kwargs={
|
81 |
+
"annotations_file": downloaded_files["val"],
|
82 |
+
"classes": classes,
|
83 |
+
"split": "val",
|
84 |
+
}
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
def _generate_examples(self, annotations_file, classes, split):
|
89 |
+
# Process annotations
|
90 |
+
with open(annotations_file, encoding="utf-8") as f:
|
91 |
+
for key, row in enumerate(f):
|
92 |
+
try:
|
93 |
+
data = json.loads(row.strip())
|
94 |
+
yield key, {
|
95 |
+
"image_id": data["image_id"],
|
96 |
+
"image_path": data["image_path"],
|
97 |
+
"width": data["width"],
|
98 |
+
"height": data["height"],
|
99 |
+
"objects": data["objects"],
|
100 |
+
}
|
101 |
+
except json.JSONDecodeError:
|
102 |
+
print(f"Skipping invalid JSON at line {key + 1}: {row}")
|
103 |
+
continue
|
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
viewer: false
|
3 |
+
---
|
4 |
+
|
5 |
+
# Boat Dataset for Object Detection
|
6 |
+
|
7 |
+
## Overview
|
8 |
+
This dataset contains images of real & virtual boats for object detection tasks. It can be used to train and evaluate object detection models.
|
9 |
+
|
10 |
+
## Dataset Structure
|
11 |
+
|
12 |
+
### Data Instances
|
13 |
+
|
14 |
+
A data point comprises an image and its object annotations.
|
15 |
+
|
16 |
+
```
|
17 |
+
{'image_id': 0,
|
18 |
+
'image_path': 'images/0720_0937_2023-07-20-09-37-30_0_middle_color000220.jpg',
|
19 |
+
'width': 640,
|
20 |
+
'height': 480,
|
21 |
+
'objects': {'id': [1],
|
22 |
+
'area': [328.0],
|
23 |
+
'bbox': [[153.69000244140625,
|
24 |
+
101.76499938964844,
|
25 |
+
21.924999237060547,
|
26 |
+
14.972999572753906]],
|
27 |
+
'category': [8]}}
|
28 |
+
```
|
29 |
+
|
30 |
+
### Data Fields
|
31 |
+
|
32 |
+
- `image_id`: the image id
|
33 |
+
- `width`: the image width
|
34 |
+
- `height`: the image height
|
35 |
+
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
|
36 |
+
- `id`: the annotation id
|
37 |
+
- `area`: the area of the bounding box
|
38 |
+
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
|
39 |
+
- `category`: the object's category, with possible values including
|
40 |
+
- `BallonBoat` (0)
|
41 |
+
- `BigBoat` (1)
|
42 |
+
- `Boat` (2)
|
43 |
+
- `JetSki` (3)
|
44 |
+
- `Katamaran` (4)
|
45 |
+
- `SailBoat` (5)
|
46 |
+
- `SmallBoat` (6)
|
47 |
+
- `SpeedBoat` (7)
|
48 |
+
- `WAM_V` (8)
|
49 |
+
|
50 |
+
|
51 |
+
### Data Splits
|
52 |
+
|
53 |
+
- `Training dataset` (42833)
|
54 |
+
- `Real`
|
55 |
+
- `WAM_V` (2333)
|
56 |
+
- `Virtual`
|
57 |
+
- `BallonBoat` (4500)
|
58 |
+
- `BigBoat` (4500)
|
59 |
+
- `Boat` (4500)
|
60 |
+
- `JetSki` (4500)
|
61 |
+
- `Katamaran` (4500)
|
62 |
+
- `SailBoat` (4500)
|
63 |
+
- `SmallBoat` (4500)
|
64 |
+
- `SpeedBoat` (4500)
|
65 |
+
- `WAM_V` (4500)
|
66 |
+
|
67 |
+
- `Val dataset` (5400)
|
68 |
+
- `Real`
|
69 |
+
- `WAM_V` (900)
|
70 |
+
- `Virtual`
|
71 |
+
- `BallonBoat` (500)
|
72 |
+
- `BigBoat` (500)
|
73 |
+
- `Boat` (500)
|
74 |
+
- `JetSki` (500)
|
75 |
+
- `Katamaran` (500)
|
76 |
+
- `SailBoat` (500)
|
77 |
+
- `SmallBoat` (500)
|
78 |
+
- `SpeedBoat` (500)
|
79 |
+
- `WAM_V` (500)
|
80 |
+
|
81 |
+
|
82 |
+
## Usage
|
83 |
+
```
|
84 |
+
from datasets import load_dataset
|
85 |
+
dataset = load_dataset("zhuchi76/Boat_dataset")
|
86 |
+
```
|
87 |
+
|
88 |
+
## Citation
|
89 |
+
If you use this dataset in your research, please cite the following paper:
|
data/instances_train2023r.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/instances_val2023r.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
instances_train2023r.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
instances_val2023r.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|