sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A383294
Positions of prime powers (A246655) in EKG-sequence.
[ "2", "3", "5", "6", "8", "10", "14", "17", "20", "22", "24", "28", "31", "33", "37", "43", "50", "57", "61", "64", "67", "74", "76", "81", "89", "100", "107", "112", "115", "122", "124", "128", "134", "138", "151", "160", "167", "171", "182", "189", "197", "203", "207", "216", "232", "236", "240", "253", "259", "264", "279", "287", "290", "297", "305", "314", "319", "328", "336", "344", "359", "363", "371", "377", "381", "401", "420", "430", "438", "444" ]
[ "nonn", "new" ]
8
1
1
[ "A064413", "A064955", "A246655", "A383293", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:27
oeisdata/seq/A383/A383294.seq
42f50d90fa3c0d082acb232fd02a7802
A383295
Positions of proper prime powers (A246547) in EKG-sequence.
[ "3", "6", "8", "17", "22", "24", "31", "50", "64", "76", "112", "122", "124", "171", "232", "240", "290", "319", "359", "485", "521", "595", "696", "823", "947", "982", "1279", "1313", "1642", "1810", "1961", "2090", "2096", "2168", "2306", "2736", "3002", "3398", "3638", "3932", "4379", "4733", "4913", "5207", "6072", "6312", "6583", "6710", "7717", "7898", "9165", "9929", "10298", "11144", "11568", "11786", "12430", "14138" ]
[ "nonn", "new" ]
9
1
1
[ "A064413", "A064955", "A246547", "A265576", "A383285", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:18
oeisdata/seq/A383/A383295.seq
4f71d46f385230f869a133f5fefcf4e3
A383304
Nonnegative integers whose difference between the largest and smallest digits is equal to the arithmetic mean of its digits.
[ "0", "13", "26", "31", "39", "62", "93", "123", "132", "144", "213", "225", "231", "246", "252", "264", "267", "276", "288", "312", "321", "348", "369", "384", "396", "414", "426", "438", "441", "462", "483", "522", "624", "627", "639", "642", "672", "693", "726", "762", "828", "834", "843", "882", "936", "963", "1133", "1223", "1232", "1313", "1322", "1331", "1344", "1434", "1443" ]
[ "nonn", "base", "easy", "new" ]
10
1
2
[ "A037904", "A054054", "A054055", "A061383", "A179239", "A371383", "A371384", "A383304", "A383305" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T10:30:42
oeisdata/seq/A383/A383304.seq
491e0f1723f63bb6244ae483f21af442
A383305
a(n) is number of n-digit nonnegative integers whose difference between the largest and smallest digits is equal to the arithmetic mean of its digits.
[ "1", "6", "39", "266", "1730", "11361", "74809", "494194", "3273132", "21730506", "144588345", "964050593", "6440655572", "43111601819", "289112380019", "1942335481170", "13072051432742", "88125501965430", "595077180675348", "4024698113281006", "27261843502415806", "184931926767687963", "1256249015578188517", "8545135121520262849", "58198759816476208605" ]
[ "nonn", "base", "new" ]
13
1
2
[ "A037904", "A054054", "A054055", "A371383", "A371384", "A383304", "A383305" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T15:06:56
oeisdata/seq/A383/A383305.seq
0a7e59e9edb0b60af85a064c291b0671
A383306
Nonnegative integers whose difference between the largest and smallest digits is equal to the mode of its digits.
[ "0", "101", "110", "112", "121", "202", "211", "220", "224", "242", "303", "330", "336", "363", "404", "422", "440", "448", "484", "505", "550", "606", "633", "660", "707", "770", "808", "844", "880", "909", "990", "1011", "1022", "1033", "1044", "1055", "1066", "1077", "1088", "1099", "1101", "1110", "1112", "1121", "1202", "1211", "1220", "1223", "1232" ]
[ "nonn", "base", "easy", "new" ]
4
1
2
[ "A037904", "A054054", "A054055", "A115353", "A383306", "A383307" ]
null
Stefano Spezia, Apr 22 2025
2025-04-25T10:31:04
oeisdata/seq/A383/A383306.seq
de40e1e03ecfdcc7bfbd7a5a091557a6
A383307
a(n) is number of n-digit nonnegative integers whose difference between the largest and smallest digits is equal to the mode of its digits.
[ "1", "0", "30", "631", "8318", "84939", "762621", "6836799", "66714966", "698183347", "7345264685", "74862560359", "738289921745", "7152117119827", "69258386123495", "678852874461343", "6757612542040310", "67956663939884115", "684414144298352061", "6858156111567293583", "68247431544857431593", "675967074881581484903" ]
[ "nonn", "base", "new" ]
16
1
3
[ "A037904", "A054054", "A054055", "A115353", "A383306", "A383307" ]
null
Stefano Spezia, Apr 22 2025
2025-04-27T15:03:32
oeisdata/seq/A383/A383307.seq
6118420ed851db0c12772055e0115ad2
A383308
Number of integer partitions of n that can be partitioned into sets with a common sum.
[ "1", "1", "2", "3", "4", "4", "8", "6", "10", "13", "15", "13", "31" ]
[ "nonn", "more", "new" ]
10
0
3
[ "A000009", "A000041", "A001055", "A045778", "A050320", "A089259", "A116540", "A270995", "A279788", "A293511", "A296119", "A302478", "A318360", "A321455", "A326518", "A326534", "A358914", "A381633", "A381717", "A381719", "A381992", "A381993", "A381994", "A382077", "A382080", "A382429", "A383014", "A383093", "A383308" ]
null
Gus Wiseman, Apr 25 2025
2025-04-27T09:09:37
oeisdata/seq/A383/A383308.seq
ebd9c52c92d84e99f745e33bda1d8da6
A383309
Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.
[ "1", "3", "5", "7", "9", "11", "17", "19", "23", "25", "27", "31", "35", "41", "49", "53", "59", "67", "81", "83", "97", "103", "109", "121", "125", "127", "131", "157", "175", "179", "191", "209", "211", "227", "241", "243", "245", "277", "283", "289", "311", "331", "343", "353", "361", "367", "391", "401", "419", "431", "461", "509", "529", "547", "563", "587", "599" ]
[ "nonn", "new" ]
7
1
2
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A023894", "A034699", "A038041", "A045778", "A050361", "A055396", "A056239", "A061395", "A112798", "A164336", "A246655", "A279784", "A279789", "A300383", "A302242", "A302493", "A317141", "A321455", "A326518", "A326534", "A353864", "A353866", "A355742", "A355743", "A381719", "A381871", "A381993", "A381995", "A382215", "A382304", "A383309" ]
null
Gus Wiseman, Apr 25 2025
2025-04-25T20:08:55
oeisdata/seq/A383/A383309.seq
649739d6a012177a590668bb5c5a82f6
A383310
Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.
[ "1", "1", "1", "2", "1", "3", "1", "5", "2", "3", "1", "8", "1", "3", "3", "9", "1", "8", "1", "8", "3", "3", "1", "20", "2", "3", "5", "8", "1", "12", "1", "19", "3", "3", "3", "24", "1", "3", "3", "20", "1", "12", "1", "8", "8", "3", "1", "46", "2", "8", "3", "8", "1", "20", "3", "20", "3", "3", "1", "38", "1", "3", "8", "37", "3", "12", "1", "8", "3", "12", "1", "67", "1", "3", "8", "8", "3", "12", "1", "46", "9", "3" ]
[ "nonn", "new" ]
10
1
4
[ "A000009", "A001055", "A001970", "A005117", "A008578", "A045778", "A045782", "A050320", "A050326", "A050336", "A050342", "A050345", "A255906", "A261049", "A279785", "A281113", "A293243", "A293511", "A296118", "A296119", "A296120", "A296121", "A296122", "A302494", "A316439", "A317776", "A358914", "A381992", "A382201", "A383310" ]
null
Gus Wiseman, Apr 26 2025
2025-04-26T15:27:20
oeisdata/seq/A383/A383310.seq
273ec7230357360207fb18637087efe2
A383312
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,1),(2,0),(2,2)}).
[ "1", "1", "0", "0", "2", "14", "86", "624", "5096", "46554", "470446", "5214936", "62943852", "821949042", "11548027442", "173711893048", "2785807179384", "47448884653218", "855436571437710", "16275060021803232", "325872090863707740", "6850004083354211050", "150827444158572339810", "3471582648001267649808", "83371646323922972242776" ]
[ "nonn", "easy", "new" ]
8
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312" ]
null
Dan Li, Apr 22 2025
2025-04-25T15:10:14
oeisdata/seq/A383/A383312.seq
0ca46396fbfc54771b316554a9424bd0
A383313
Expansion of e.g.f. exp(-x/2) / (1-2*x)^(1/4).
[ "1", "0", "1", "4", "27", "232", "2455", "30852", "449113", "7432624", "137829249", "2830911220", "63796168579", "1565078980536", "41521403685463", "1184510408920468", "36158133322895985", "1176012432875399008", "40599110984252798017", "1482736219224857910756", "57115359439245403771051" ]
[ "nonn", "new" ]
12
0
4
[ "A002801", "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:42:22
oeisdata/seq/A383/A383313.seq
0e02f27c13eee347df56a7bb683a3a58
A383314
Expansion of e.g.f. exp(-x/2) / (1-4*x)^(1/8).
[ "1", "0", "2", "16", "204", "3392", "69880", "1717824", "49077392", "1597961728", "58410015264", "2368359845120", "105492853521088", "5120497605295104", "269008689666893696", "15207860554294309888", "920541893947665404160", "59401332750388003782656", "4070589051420604880962048" ]
[ "nonn", "new" ]
13
0
3
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:25:47
oeisdata/seq/A383/A383314.seq
e0a759a6c303e0fa600a7c40934ba9f7
A383315
Expansion of e.g.f. exp(-x/2) / (1-6*x)^(1/12).
[ "1", "0", "3", "36", "675", "16632", "509085", "18626436", "793001097", "38511087120", "2101009734099", "127215916659540", "8465583820754907", "614101808094096744", "48230098800348987405", "4077120575169267005268", "369111206211249734907345", "35630377583888099367357984", "3653123185073359871950788963" ]
[ "nonn", "new" ]
12
0
3
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:34:33
oeisdata/seq/A383/A383315.seq
5c98b61a092dff992120c34e046f4699
A383316
Expansion of e.g.f. exp(x/2) / (1-4*x)^(1/8).
[ "1", "1", "3", "23", "281", "4593", "93643", "2285959", "64981809", "2107824353", "76819828499", "3107456481399", "138145505435977", "6694550810809297", "351219409831557339", "19832058937696108007", "1199219012904515868257", "77314609952787255980481", "5293934640303567123132451" ]
[ "nonn", "new" ]
12
0
3
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:29:22
oeisdata/seq/A383/A383316.seq
9bf9b796c8f0b57c9221feda83863031
A383317
Expansion of e.g.f. exp(x/2) / (1-6*x)^(1/12).
[ "1", "1", "4", "46", "838", "20398", "619768", "22564252", "957247708", "46363595644", "2524152072304", "152582368541224", "10139721673875976", "734706716925462184", "57646381491830349472", "4869084744694710293392", "440492624600086270972432", "42494068518463022190243088", "4354423933547086885775444032" ]
[ "nonn", "new" ]
14
0
3
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:47:27
oeisdata/seq/A383/A383317.seq
dbc7a5557069a5990d692f672daac70d
A383318
Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits.
[ "6455", "3", "5", "1", "12", "37", "15", "7", "4", "71", "77", "35", "33", "8", "9", "14", "91", "371", "92", "34", "346", "72", "53", "94", "79", "13", "923", "39", "359", "2", "41", "49", "140", "141", "721", "916", "724", "17", "31", "792", "27", "80", "98", "11", "54", "497", "159", "547", "95", "912", "760", "73", "10", "340", "952", "131", "25", "135", "47", "93", "739", "43" ]
[ "nonn", "base", "new" ]
9
1
1
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:39:28
oeisdata/seq/A383/A383318.seq
3057689fed03bc9cd3cb1351b199b9d9
A383319
a(n) = prime(A383318(n))
[ "64553", "5", "11", "2", "37", "157", "47", "17", "7", "353", "389", "149", "137", "19", "23", "43", "467", "2539", "479", "139", "2339", "359", "241", "491", "401", "41", "7219", "167", "2417", "3", "179", "227", "809", "811", "5449", "7159", "5479", "59", "127", "6073", "103", "409", "521", "31", "251", "3547", "937", "3943", "499", "7121", "5791", "367", "29" ]
[ "nonn", "base", "new" ]
6
1
1
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:39:39
oeisdata/seq/A383/A383319.seq
c77935d8f2b2c896c9e5b4e585615783
A383320
Lexicographically earliest sequence of distinct terms such that replacing each term k with Fibonacci(k) does not change the succession of digits.
[ "0", "1", "5", "43", "3", "4", "9", "44", "37", "2", "33", "470", "140", "8", "7", "332", "41", "57", "81", "71", "35", "24", "578", "74", "93", "86", "58", "6", "61", "14", "242", "47", "46", "936", "9310", "13", "87", "148", "48", "19", "30", "12", "55", "77", "36", "270", "246", "51", "68", "97", "194", "4350", "50", "27", "72", "31", "359", "90", "22", "40", "278", "505", "23" ]
[ "nonn", "base", "new" ]
6
1
3
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:40:13
oeisdata/seq/A383/A383320.seq
5256f388dd3f1c1a492df10a488add71
A383321
a(n) = Fibonacci(A383320(n))
[ "0", "1", "5", "433494437", "2", "3", "34", "701408733", "24157817", "1", "3524578", "74938658661142424746936931013871484819301255773627024651689719443505027723135990224027850523592585", "81055900096023504197206408605", "21", "13" ]
[ "nonn", "base", "new" ]
7
1
3
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:40:26
oeisdata/seq/A383/A383321.seq
ab54893b808ccbb61810a5fa8e72a4a7
A383322
Lexicographically earliest sequence of distinct terms such that replacing each term k with k! does not change the succession of digits.
[ "1", "2", "198", "15", "5", "24", "3", "0", "56", "4", "800", "260", "18", "181", "7", "120", "43", "26", "25", "78", "46", "6", "11", "45", "67", "2580", "8", "37", "34", "49", "61", "66", "465", "63", "9", "28", "62", "93", "960", "65", "410", "626", "13", "82", "98", "59", "32", "659", "453", "242", "255", "580", "939", "42", "70", "44", "932", "22", "55", "38", "389", "50" ]
[ "nonn", "base", "new" ]
11
1
2
[ "A033147", "A302656", "A383318", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-24T15:14:55
oeisdata/seq/A383/A383322.seq
f7e3c033239f1e88286c316e30aaf1f6
A383324
a(n) = round(3^n/5).
[ "0", "1", "2", "5", "16", "49", "146", "437", "1312", "3937", "11810", "35429", "106288", "318865", "956594", "2869781", "8609344", "25828033", "77484098", "232452293", "697356880", "2092070641", "6276211922", "18828635765", "56485907296", "169457721889", "508373165666", "1525119496997", "4575358490992", "13726075472977" ]
[ "nonn", "easy", "new" ]
14
0
3
[ "A178543", "A383324" ]
null
Chai Wah Wu, Apr 23 2025
2025-04-25T18:49:29
oeisdata/seq/A383/A383324.seq
df571ee2cfa8a1a85aef569e3817fd8e
A383325
Numbers not of the form round(3^k/5). Complement of A383324.
[ "3", "4", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72" ]
[ "nonn", "new" ]
6
1
1
[ "A383324", "A383325" ]
null
Chai Wah Wu, Apr 23 2025
2025-04-25T16:00:15
oeisdata/seq/A383/A383325.seq
ccc1691da421be8ab309a09b2c3efb83
A383329
Number of multiplications required to compute x^n by Knuth's power tree method.
[ "0", "1", "2", "2", "3", "3", "4", "3", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "6", "5", "6", "6", "6", "5", "6", "6", "6", "6", "7", "6", "7", "5", "6", "6", "7", "6", "7", "7", "7", "6", "7", "7", "7", "7", "7", "7", "8", "6", "7", "7", "7", "7", "8", "7", "8", "7", "8", "8", "8", "7", "8", "8", "8", "6", "7", "7", "8", "7", "8", "8", "9", "7", "8", "8", "8", "8", "9", "8", "9", "7", "8", "8", "8", "8", "8", "8", "9" ]
[ "nonn", "new" ]
8
1
3
[ "A003313", "A113945", "A114622", "A114623", "A115617", "A122352", "A383329" ]
null
Pontus von Brömssen, Apr 24 2025
2025-04-24T08:53:59
oeisdata/seq/A383/A383329.seq
5fea9ed7d5971f2b8d05a655643a65bf
A383330
Triangle read by rows: T(n,k) is the length of a shortest vectorial addition chain for (n,k), 0 <= k <= n.
[ "0", "0", "1", "1", "2", "2", "2", "3", "3", "3", "2", "3", "3", "4", "3", "3", "4", "4", "4", "4", "4", "3", "4", "4", "4", "4", "5", "4", "4", "5", "5", "5", "5", "5", "5", "5", "3", "4", "4", "5", "4", "5", "5", "6", "4", "4", "5", "5", "5", "5", "5", "5", "6", "5", "5", "4", "5", "5", "5", "5", "5", "5", "6", "5", "6", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "5", "6", "6", "7", "5" ]
[ "nonn", "tabl", "new" ]
7
0
5
[ "A003313", "A265690", "A383330", "A383331", "A383332" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:27
oeisdata/seq/A383/A383330.seq
2a53505178ced530017c03cf1b3ec567
A383331
Number of pairs of nonnegative integers, not both equal to 0, with a shortest vectorial addition chain of length n.
[ "2", "3", "7", "16", "37", "91", "229", "585", "1528", "4034", "10862" ]
[ "nonn", "hard", "more", "new" ]
7
0
1
[ "A003065", "A383330", "A383331", "A383332", "A383333" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:47
oeisdata/seq/A383/A383331.seq
3988d21362ca185028eebc2549a9de50
A383332
Smallest positive weight of a pair of nonnegative integers with a shortest vectorial addition chain of length n.
[ "1", "2", "3", "4", "6", "8", "12", "20", "29", "44", "70", "104" ]
[ "nonn", "hard", "more", "new" ]
7
0
2
[ "A003064", "A383330", "A383331", "A383332", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:12
oeisdata/seq/A383/A383332.seq
f09a420a7b245a567e65c7b8641a590c
A383333
Square array read by antidiagonals: T(n,k) is the number of n-tuples of nonnegative integers, not all equal to 0, with a shortest vectorial addition chain of length k; n >= 1, k >= 0.
[ "1", "1", "2", "2", "3", "3", "3", "7", "6", "4", "5", "16", "16", "10", "5", "9", "37", "46", "30", "15", "6", "15", "91", "134", "101", "50", "21", "7", "26", "229", "411", "349", "190", "77", "28", "8", "44", "585", "1319", "1264", "751", "323", "112", "36", "9", "78", "1528", "4368", "4817", "3106", "1426", "511", "156", "45", "10", "136", "4034", "14925", "19131", "13532", "6586", "2478", "766", "210", "55", "11" ]
[ "nonn", "tabl", "new" ]
6
1
3
[ "A000027", "A000217", "A003065", "A005581", "A383331", "A383333", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:21
oeisdata/seq/A383/A383333.seq
74a9dde1d98f36a5a567a987f0502c7c
A383334
Square array read by antidiagonals: T(n,k) is the smallest positive weight of an n-tuple of nonnegative integers with a shortest vectorial addition chain of length k; n >= 1, k >= 0.
[ "1", "2", "1", "3", "2", "1", "5", "3", "2", "1", "7", "4", "3", "2", "1", "11", "6", "4", "3", "2", "1", "19", "8", "5", "4", "3", "2", "1", "29", "12", "7", "5", "4", "3", "2", "1", "47", "20", "9", "6", "5", "4", "3", "2", "1", "71", "29", "13", "8", "6", "5", "4", "3", "2", "1", "127", "44", "20", "10", "7", "6", "5", "4", "3", "2", "1", "191", "70", "30", "14", "9", "7", "6", "5", "4", "3", "2", "1" ]
[ "nonn", "tabl", "new" ]
6
1
2
[ "A003064", "A383332", "A383333", "A383334" ]
null
Pontus von Brömssen, Apr 26 2025
2025-04-26T11:27:09
oeisdata/seq/A383/A383334.seq
a8e4ac43b768415e056bcb1992395e51
A383335
Length of shortest addition-multiplication-exponentiation chain for n.
[ "0", "1", "2", "2", "3", "3", "4", "3", "3", "4", "4", "4", "5", "5", "4", "3", "4", "4", "5", "4", "5", "5", "6", "4", "4", "5", "3", "4", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "5", "5", "6", "5", "6", "6", "5", "6", "6", "5", "5", "5", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "6", "6", "4", "5", "5", "5", "5", "6", "5", "6", "5", "6", "6", "5", "6", "6", "6", "7", "5", "4", "5", "5", "5", "5", "6", "5" ]
[ "nonn", "new" ]
4
1
3
[ "A003313", "A128998", "A230697", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-04-27T14:54:16
oeisdata/seq/A383/A383335.seq
89cf3b82eea8e4e2e6942fe488f365f5
A383336
Smallest number with shortest addition-multiplication-exponentiation chain of length n.
[ "1", "2", "3", "5", "7", "13", "23", "79", "214", "1399", "5991", "33447" ]
[ "nonn", "hard", "more", "new" ]
7
0
2
[ "A003064", "A173566", "A383001", "A383142", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-04-27T14:54:26
oeisdata/seq/A383/A383336.seq
f2c4ba7100cfa117f1d615fd6911adfc
A383337
Number of integers with a shortest addition-multiplication-exponentiation chain of length n.
[ "1", "1", "2", "7", "45", "484" ]
[ "nonn", "hard", "more", "new" ]
5
0
3
[ "A003065", "A383002", "A383143", "A383335", "A383336", "A383337" ]
null
Pontus von Brömssen, Apr 27 2025
2025-04-27T14:54:33
oeisdata/seq/A383/A383337.seq
8740f2eb89a2b529c94872b95a55427e
A383339
a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise; a(n) is the number of terms that are the same distance away from their previous last occurrence as a(n-1).
[ "1", "1", "1", "2", "1", "1", "3", "2", "1", "1", "4", "2", "2", "5", "3", "1", "1", "6", "3", "3", "7", "4", "1", "2", "2", "8", "4", "1", "2", "4", "2", "2", "9", "5", "1", "1", "10", "5", "5", "11", "6", "1", "3", "2", "1", "3", "4", "1", "5", "1", "3", "3", "12", "6", "1", "4", "1", "4", "5", "2", "1", "6", "2", "6", "6", "13", "7", "1", "2", "4", "2", "7", "5", "1", "5", "8", "1", "7", "6", "2", "2", "14", "6", "7", "7", "15" ]
[ "nonn", "new" ]
10
1
4
[ "A383339", "A383340" ]
null
Neal Gersh Tolunsky, Apr 23 2025
2025-04-25T20:38:40
oeisdata/seq/A383/A383339.seq
a782583c9138c3a590024850d75d863c
A383340
a(1)=1; thereafter if a(n-1) is a first occurrence, then a(n) is the number of first occurrences in the sequence thus far. Otherwise, a(n) is the number of terms that are the same number of distinct values away from their previous last occurrence as a(n-1).
[ "1", "1", "1", "2", "1", "1", "3", "2", "1", "2", "2", "4", "2", "3", "1", "2", "3", "4", "3", "4", "5", "1", "1", "5", "6", "1", "5", "6", "7", "1", "4", "2", "1", "8", "2", "9", "3", "1", "3", "7", "2", "4", "3", "5", "2", "6", "3", "7", "1", "4", "5", "6", "2", "7", "3", "8", "4", "9", "5", "1", "6", "7", "2", "8", "3", "9", "4", "10", "1", "11", "2", "5", "1", "8", "12", "3", "1", "9", "2", "10", "13", "3", "4", "2", "5", "3" ]
[ "nonn", "look", "new" ]
11
1
4
[ "A383339", "A383340" ]
null
Neal Gersh Tolunsky, Apr 23 2025
2025-04-25T21:29:37
oeisdata/seq/A383/A383340.seq
60fc33d1e01e1c74e1e223a02589a6bf
A383341
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!.
[ "1", "1", "1", "1", "1", "2", "1", "1", "3", "6", "1", "1", "4", "11", "24", "1", "1", "5", "16", "53", "120", "1", "1", "6", "21", "88", "309", "720", "1", "1", "7", "26", "129", "568", "2119", "5040", "1", "1", "8", "31", "176", "897", "4288", "16687", "40320", "1", "1", "9", "36", "229", "1296", "7317", "36832", "148329", "362880", "1", "1", "10", "41", "288", "1765", "11296", "67365", "354688", "1468457", "3628800" ]
[ "nonn", "tabl", "new" ]
21
0
6
[ "A000142", "A000255", "A052124", "A295181", "A383341", "A383378", "A383379", "A383383" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T16:00:41
oeisdata/seq/A383/A383341.seq
3a5c9cb088764199a44665327f4a7c9f
A383344
Expansion of e.g.f. exp(-4*x) / (1-x)^4.
[ "1", "0", "4", "8", "72", "416", "3520", "31104", "316288", "3525632", "43117056", "572195840", "8191304704", "125761056768", "2060841582592", "35894401335296", "662066514984960", "12890305925218304", "264155723747688448", "5682905054074109952", "128051031032232411136", "3015653024970577018880" ]
[ "nonn", "easy", "new" ]
16
0
3
[ "A000166", "A087981", "A088991", "A137775", "A295181", "A381504", "A383344" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-25T12:10:52
oeisdata/seq/A383/A383344.seq
f7e80e0e577c58c468da7b67b869198f
A383346
Representation of n in rational base 3/2.
[ "0", "2", "21", "210", "212", "2101", "2120", "2122", "21011", "21200", "21202", "21221", "210110", "210112", "212001", "212020", "212022", "212211", "2101100", "2101102", "2101121", "2120010", "2120012", "2120201", "2120220", "2120222", "2122111", "21011000", "21011002", "21011021", "21011210", "21011212", "21200101", "21200120" ]
[ "nonn", "base", "new" ]
16
0
2
[ "A024629", "A383346" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T06:48:18
oeisdata/seq/A383/A383346.seq
e875beec24f98892ce89f6d0248b5f1d
A383348
Triangle related to the partitions of n in three colors, read by rows.
[ "9", "6", "243", "1", "243", "6561", "0", "90", "8748", "177147", "0", "15", "4860", "295245", "4782969", "0", "1", "1458", "216513", "9565938", "129140163", "0", "0", "252", "91854", "8680203", "301327047", "3486784401", "0", "0", "24", "24786", "4723920", "325241892", "9298091736", "94143178827", "0", "0", "1", "4374", "1712421", "215233605", "11622614670", "282429536481", "2541865828329" ]
[ "nonn", "tabl", "new" ]
5
1
1
[ "A013733", "A383348" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T13:21:09
oeisdata/seq/A383/A383348.seq
5514aaca44bc52e18fd5fa9cac6b0838
A383354
Squares of plane partition numbers.
[ "1", "1", "9", "36", "169", "576", "2304", "7396", "25600", "79524", "250000", "737881", "2187441", "6175225", "17363889", "47320641", "127622209", "336135556", "876219201", "2240128900", "5666777284", "14112014436", "34772925625", "84554753089", "203576025636", "484461937089", "1142215875025", "2665572144964", "6166451098756" ]
[ "nonn", "new" ]
5
0
3
[ "A000219", "A001255", "A304990", "A383354" ]
null
Ilya Gutkovskiy, Apr 24 2025
2025-04-24T08:54:09
oeisdata/seq/A383/A383354.seq
09b5c2c0433ac6e5e60058f3bdd9ffbc
A383363
Composite numbers k all of whose proper divisors have binary weights that are not equal to the binary weight of k.
[ "15", "25", "27", "39", "51", "55", "57", "63", "69", "77", "81", "85", "87", "91", "95", "99", "111", "115", "117", "119", "121", "123", "125", "141", "143", "145", "147", "159", "169", "171", "175", "177", "183", "185", "187", "201", "203", "205", "207", "209", "213", "215", "219", "221", "231", "235", "237", "243", "245", "247", "249", "253", "255", "261", "265", "275" ]
[ "nonn", "easy", "base", "new" ]
12
1
1
[ "A000120", "A325571", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:30:29
oeisdata/seq/A383/A383363.seq
685a7f01f1adb296bcfa4a5d4a91e341
A383364
a(n) is the least number k with exactly n proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "25", "15", "81", "63", "15625", "231", "1225", "405", "59049", "495", "531441", "5103", "2025", "1485", "33232930569601", "2475", "3814697265625", "6237", "18225", "295245", "31381059609", "4095", "1500625", "2657205", "81225", "25515", "22876792454961", "14175", "931322574615478515625", "21735", "31236921", "301327047" ]
[ "nonn", "base", "new" ]
7
0
2
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:32:07
oeisdata/seq/A383/A383364.seq
ad0ed96d8987856dd354f01a293702fc
A383365
Numbers k with a record number of proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "15", "63", "231", "405", "495", "1485", "2475", "4095", "14175", "21735", "24255", "31185", "79695", "190575", "218295", "239085", "294525", "904365", "1276275", "2789325", "3586275", "4937625", "6912675", "10072755", "17342325", "17972955", "26801775", "46621575", "80405325", "192567375", "326351025", "333107775", "654729075" ]
[ "nonn", "base", "new" ]
13
1
2
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-25T03:10:22
oeisdata/seq/A383/A383365.seq
cfac21ba10688a81c8bfdf173807dc92
A383366
Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
[ "4400700", "12963816", "29878920", "38353800", "44973480", "51894304", "52208520", "67849656", "73134432", "81685080", "100711656", "103759848", "105096096", "113044896", "113161320", "114608032", "128639034", "135465912", "135559080", "136786200", "139242740", "148758120", "156686088", "159628350", "171090416" ]
[ "nonn", "base", "new" ]
8
1
1
[ "A380845", "A380846", "A380849", "A380850", "A383366" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T13:20:53
oeisdata/seq/A383/A383366.seq
530b2c946036abcd2d5fc6fc6df4c5d5
A383369
Population of elementary triangular automaton rule 90 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "6", "12", "6", "24", "24", "48", "6", "24", "36", "72", "24", "96", "96", "192", "6", "24", "36", "72", "36", "144", "144", "288", "24", "96", "144", "288", "96", "384", "384", "768", "6", "24", "36", "72", "36", "144", "144", "288", "36", "144", "216", "432", "144", "576", "576", "1152", "24", "96", "144", "288", "144", "576", "576", "1152", "96", "384", "576", "1152", "384", "1536", "1536", "3072", "6" ]
[ "nonn", "new" ]
14
0
2
[ "A246035", "A247640", "A275667", "A383369" ]
null
Paul Cousin, Apr 24 2025
2025-04-25T08:45:58
oeisdata/seq/A383/A383369.seq
d672fe3303e76d867be2a37dc9424522
A383370
Number of partial orders on {1,2,...,n} that are contained in the usual linear order, whose dual is given by the relabelling k -> n+1-k.
[ "1", "1", "2", "3", "12", "25", "172", "482", "5318", "19675" ]
[ "nonn", "hard", "more", "new" ]
11
0
3
[ "A006455", "A037223", "A383370" ]
null
Ludovic Schwob, Apr 24 2025
2025-04-25T16:01:10
oeisdata/seq/A383/A383370.seq
70b458e9b73cc5842d0ddf40a473025d
A383371
Primes whose decimal digits are integer powers of 2.
[ "2", "11", "41", "181", "211", "241", "281", "421", "811", "821", "881", "1181", "1481", "1811", "2111", "2141", "2221", "2281", "2411", "2441", "4111", "4211", "4241", "4421", "4441", "4481", "8111", "8221", "8821", "11411", "11821", "12211", "12241", "12281", "12421", "12821", "12841", "14221", "14281", "14411", "14821", "18121", "18181", "18211" ]
[ "nonn", "base", "easy", "new" ]
12
1
1
[ "A000040", "A028846", "A066593", "A173580", "A260267", "A260270", "A381259", "A383371" ]
null
Jason Bard, Apr 24 2025
2025-04-25T15:26:14
oeisdata/seq/A383/A383371.seq
f0709a6c130af29a216cad173364362a
A383372
Number of centrally symmetric Baxter permutations of length n.
[ "1", "1", "2", "2", "6", "8", "26", "38", "130", "202", "712", "1152", "4144", "6904", "25202", "42926", "158442", "274586", "1022348", "1796636", "6736180", "11974360", "45154320", "81040720", "307069360", "555620080", "2113890560", "3851817920", "14705955008", "26960013552", "103245460226" ]
[ "nonn", "new" ]
7
0
3
[ "A001181", "A383372" ]
null
Ludovic Schwob, Apr 24 2025
2025-04-25T12:29:41
oeisdata/seq/A383/A383372.seq
bbd379dadbdc300ce7afc23e37d3bdf4
A383373
G.f. A(x) satisfies A(x/A(x)) = sqrt( A(x)/(1-x) ).
[ "1", "1", "3", "17", "144", "1578", "20667", "309537", "5163546", "94322686", "1865068734", "39590596392", "896665516139", "21564504636677", "548607953848461", "14717355393674499", "415221091369972818", "12291288050720271156", "380962114204256259227", "12340036749852846376091", "417016745706666405878133", "14679158494566139185152215" ]
[ "nonn", "new" ]
12
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:35:00
oeisdata/seq/A383/A383373.seq
30b3103fdee147501b8935a4822cf83c
A383374
G.f. A(x) satisfies A(x*A(x)) = A(x)^2/(1 + x*A(x)^3).
[ "1", "1", "4", "27", "249", "2844", "38075", "577673", "9717329", "178553807", "3546288227", "75545107370", "1716015649915", "41373846407013", "1054899166283981", "28355559280197387", "801428339782456817", "23762420081295087151", "737605545429659396990", "23925256916784635157871", "809554335031496855685141", "28530240300376524015778791" ]
[ "nonn", "new" ]
14
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:35:25
oeisdata/seq/A383/A383374.seq
accfb889987362e79d19824705f0aedb
A383375
G.f. A(x) satisfies [x^n] 1/A(x)^(n+1) = [x^n] 1/A(x)^(2*n+2) for n > 1, with A'(0) = 1.
[ "1", "1", "5", "40", "414", "5100", "71678", "1121273", "19216748", "356943612", "7130028364", "152267876318", "3460605407367", "83386349441711", "2123571541190759", "57000879370143239", "1608746374389534964", "47636112766991357023", "1476931395095225314527", "47858488423054347510410", "1618037571915550646760348", "56984337381224407981871465" ]
[ "nonn", "new" ]
13
0
3
[ "A383373", "A383374", "A383375" ]
null
Paul D. Hanna, Apr 24 2025
2025-04-26T16:33:42
oeisdata/seq/A383/A383375.seq
cfe28f461ab23b46e8501357d03d910a
A383378
Expansion of e.g.f. exp(-3*x) / (1-x)^4.
[ "1", "1", "5", "21", "129", "897", "7317", "67365", "692577", "7849953", "97199109", "1304688789", "18863836065", "292198665249", "4826470920021", "84669407740773", "1571901715253313", "30786460730863425", "634323280633460613", "13714611211502376597", "310448651226154786881", "7342298348439393120321" ]
[ "nonn", "easy", "new" ]
18
0
3
[ "A000261", "A010843", "A137775", "A383341", "A383344", "A383378", "A383380", "A383382" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:00:22
oeisdata/seq/A383/A383378.seq
4792af36478478d063e25bddfd8fec20
A383379
a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k,n)/(n-k)!.
[ "1", "1", "4", "21", "176", "1765", "22464", "331177", "5692672", "110286441", "2394828800", "57389046781", "1507401363456", "43018690418509", "1326170009092096", "43905977120300625", "1553942522589937664", "58544111242378404433", "2339326913228257886208", "98816004834223734304741" ]
[ "nonn", "new" ]
11
0
3
[ "A295182", "A383341", "A383379" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T11:42:51
oeisdata/seq/A383/A383379.seq
f21f6aba73fee01afa617d3af111ea0b
A383380
Expansion of e.g.f. exp(-2*x) / (1-x)^4.
[ "1", "2", "8", "40", "248", "1808", "15136", "142784", "1496960", "17254144", "216740864", "2945973248", "43065951232", "673626675200", "11224114860032", "198447384666112", "3710328985124864", "73136238041563136", "1515739708283944960", "32947698735175172096", "749499782353468522496", "17806903161183314378752" ]
[ "nonn", "easy", "new" ]
14
0
2
[ "A000023", "A000255", "A000261", "A052124", "A087981", "A383344", "A383378", "A383380", "A383381" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T11:49:10
oeisdata/seq/A383/A383380.seq
ded9ff6dbdf73793eed490bc375f1d43
A383381
Expansion of e.g.f. exp(-2*x) / (1-x)^5.
[ "1", "3", "14", "82", "576", "4688", "43264", "445632", "5062016", "62812288", "844863744", "12239474432", "189939644416", "3142842052608", "55223903596544", "1026805938614272", "20139224002953216", "415503046091767808", "8994794537935765504", "203848794955954716672", "4826475681472562855936", "119162892472107134353408" ]
[ "nonn", "easy", "new" ]
13
0
2
[ "A000023", "A001909", "A052124", "A087981", "A383380", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:02:53
oeisdata/seq/A383/A383381.seq
c7f38aa27914163e45dc2db249f0a87b
A383382
Expansion of e.g.f. exp(-3*x) / (1-x)^5.
[ "1", "2", "9", "48", "321", "2502", "22329", "223668", "2481921", "30187242", "399071529", "5694475608", "87197543361", "1425766728942", "24787205125209", "456477484618908", "8875541469155841", "181670665706512722", "3904395263350689609", "87898121215165479168", "2068411075529464370241", "50778930934558144895382" ]
[ "nonn", "easy", "new" ]
14
0
2
[ "A001909", "A010843", "A137775", "A383378", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:04:46
oeisdata/seq/A383/A383382.seq
8c5e2ff6b51c703df255175e831b2c3b
A383383
Expansion of e.g.f. exp(-4*x) / (1-x)^5.
[ "1", "1", "6", "26", "176", "1296", "11296", "110176", "1197696", "14304896", "186166016", "2620022016", "39631568896", "640971452416", "11034441916416", "201411030081536", "3884642996289536", "78929236862140416", "1684881987266215936", "37695662812132212736", "881964287274876665856", "21536903057742987001856" ]
[ "nonn", "easy", "new" ]
14
0
3
[ "A001909", "A383341", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:12:22
oeisdata/seq/A383/A383383.seq
d05029fd0c044f7e305de8305c86b8a1
A383384
Expansion of e.g.f. exp(-5*x) / (1-x)^5.
[ "1", "0", "5", "10", "105", "620", "5725", "52950", "571025", "6686200", "85871925", "1193029250", "17846277625", "285737086500", "4874590170125", "88245858436750", "1689282139310625", "34088182903910000", "723088091207873125", "16083522103093616250", "374280288623526655625", "9093957982779894737500" ]
[ "nonn", "easy", "new" ]
19
0
3
[ "A000166", "A001909", "A295181", "A383381", "A383382", "A383383", "A383384" ]
null
Seiichi Manyama, Apr 24 2025
2025-04-25T12:07:48
oeisdata/seq/A383/A383384.seq
4209ba03963cf52a25e2aa6bbf232ae7
A383390
Numbers k such that k^2 and (k+1)^2 are both abundant numbers.
[ "104", "495", "584", "735", "944", "1155", "1364", "1484", "2144", "2204", "2415", "2624", "2924", "2925", "3135", "3255", "3794", "3795", "4304", "4484", "4784", "4844", "5264", "5355", "5445", "5564", "5565", "5655", "5775", "5984", "6104", "6764", "7424", "7455", "7664", "7755", "7875", "8084", "8294", "8295", "8414", "8415", "8924", "9009", "9344", "9944", "9975" ]
[ "nonn", "new" ]
14
1
1
[ "A005101", "A063734", "A096399", "A381738", "A383390", "A383391" ]
null
Amiram Eldar, Apr 25 2025
2025-04-26T13:25:42
oeisdata/seq/A383/A383390.seq
3cfd114c95e1dec2600c44f57a66767a
A383391
Numbers k such that k^2, (k+1)^2 and (k+2)^2 are all abundant numbers.
[ "2924", "3794", "5564", "8294", "8414", "10064", "13454", "19304", "22154", "22814", "35684", "39974", "40544", "40754", "41768", "46214", "49994", "52064", "56264", "60884", "63854", "65624", "68354", "68474", "69068", "70244", "78974", "84824", "88604", "92168", "93224", "95354", "100694", "102464", "106028", "107084", "111110", "111824" ]
[ "nonn", "new" ]
18
1
1
[ "A002110", "A005101", "A063734", "A096536", "A381738", "A383390", "A383391" ]
null
Amiram Eldar, Apr 25 2025
2025-04-27T15:04:43
oeisdata/seq/A383/A383391.seq
ff7551781be91d611c3f1e1474b90547
A383398
a(n) is the smallest number, whose sum with any previous term is abundant.
[ "1", "11", "19", "29", "59", "349", "521", "2071", "66949", "223231", "3660191", "4552181", "5500081", "10161979", "12235619", "47859629" ]
[ "nonn", "hard", "more", "new" ]
23
1
2
[ "A000040", "A001358", "A005100", "A005101", "A173490", "A383398", "A383399" ]
null
Jakub Buczak, Apr 25 2025
2025-04-26T15:19:18
oeisdata/seq/A383/A383398.seq
644656cf5cce039de6d86bcc86398e70
A383399
For n>1, a(n) is the smallest number greater than a(n-1), whose sum with any previous term is deficient, with a(1) = 1.
[ "1", "2", "3", "6", "7", "8", "31", "43", "44", "91", "115", "121", "122", "127", "128", "140", "146", "163", "211", "248", "283", "290", "331", "403", "427", "464", "511", "595", "631", "667", "668", "751", "842", "883", "931", "955", "1051", "1106", "1123", "1171", "1243", "1291", "1388", "1411", "1555", "1591", "1682", "1711", "1723", "1771", "1843", "1891", "2011", "2131" ]
[ "nonn", "new" ]
19
1
2
[ "A005100", "A005101", "A383398", "A383399" ]
null
Jakub Buczak, Apr 25 2025
2025-04-26T15:19:43
oeisdata/seq/A383/A383399.seq
f418e53048da1550de06e893e960ed23
A383406
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,1),(1,0),(1,2),(2,1),(2,2)}).
[ "1", "1", "0", "0", "2", "14", "88", "632", "5152", "46976", "474056", "5249064", "63298724", "825977620", "11597642568", "174371083288", "2795208188972", "47592162832412", "857760977798888", "16315057829100968", "326599827759568812", "6863964030561807340", "151109048051281532488", "3477542225297684400056", "83503678542689445133052" ]
[ "nonn", "easy", "new" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406" ]
null
Dan Li, Apr 25 2025
2025-04-26T08:28:34
oeisdata/seq/A383/A383406.seq
f61b94cfbea5189679b44bad4945f963
A383407
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}).
[ "1", "1", "0", "0", "2", "14", "88", "636", "5174", "47122", "475124", "5257936", "63380706", "826813990", "11606987816", "174484661916", "2796700455414", "47613243806514", "858079661762692", "16320191491499712", "326687622910353650", "6865552738575268502", "151139376627154723752", "3478151378775992816412", "83516519907235226131286" ]
[ "nonn", "easy", "new" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406", "A383407" ]
null
Dan Li, Apr 26 2025
2025-04-26T08:28:43
oeisdata/seq/A383/A383407.seq
c41315be9cc73d41c28f0dbf3d3e36c2
A383408
Number of king permutations on n elements avoiding the mesh pattern (12, {(0,0),(0,2),(1,0),(1,1),(1,2),(2,1)}).
[ "1", "1", "0", "0", "2", "14", "88", "632", "5152", "46972", "474008", "5248616", "63294680", "825940168", "11597278752", "174367336624", "2795167052832", "47591679875632", "857754907053056", "16314976128578752", "326598651690933216", "6863945954213702816", "151108752072042907968", "3477537076217415673344", "83503583639127861347392" ]
[ "nonn", "easy", "new" ]
5
0
5
[ "A002464", "A382644", "A382645", "A382651", "A383040", "A383107", "A383312", "A383406", "A383407", "A383408" ]
null
Dan Li, Apr 26 2025
2025-04-26T08:28:38
oeisdata/seq/A383/A383408.seq
4903069ec9b10f90109c9544c8093d41
A383414
Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).
[ "7", "28", "15", "112", "60", "23", "448", "240", "92", "31", "1792", "960", "368", "124", "39", "7168", "3840", "1472", "496", "156", "47", "28672", "15360", "5888", "1984", "624", "188", "55", "114688", "61440", "23552", "7936", "2496", "752", "220", "63", "458752", "245760", "94208", "31744", "9984", "3008", "880", "252", "71", "1835008", "983040", "376832", "126976", "39936", "12032", "3520", "1008", "284", "79" ]
[ "nonn", "easy", "tabl", "new" ]
6
0
1
[ "A000302", "A002042", "A004215", "A004771", "A383414", "A383415" ]
null
Stefano Spezia, Apr 26 2025
2025-04-27T15:03:42
oeisdata/seq/A383/A383414.seq
4818c9453771f3db61529021aa3e5f85
A383415
Antidiagonal sums of A383414.
[ "7", "43", "195", "811", "3283", "13179", "52771", "211147", "844659", "3378715", "13514947", "54059883", "216239635", "864958651", "3459834723", "13839339019", "55357356211", "221429424987", "885717700099", "3542870800555", "14171483202387", "56685932809723", "226743731239075", "906974924956491", "3627899699826163" ]
[ "nonn", "easy", "new" ]
4
0
1
[ "A383414", "A383415" ]
null
Stefano Spezia, Apr 26 2025
2025-04-27T15:03:50
oeisdata/seq/A383/A383415.seq
941c76c59e999ad776ddfd52c1f9d9b0
A383428
Primitive terms in A066192: number k such that k is a term of A066192 and k/2 is not.
[ "4", "12", "56", "120", "528", "672", "992", "1456", "2160", "2208", "6720", "9024", "9120", "11904", "13104", "16256", "17472", "24800", "29568", "55104", "55552", "73440", "90816", "95040", "119040", "120960", "121024", "123648", "131040", "146688", "151680", "174720", "195072", "223104", "297600", "397440", "399616", "445536", "505344" ]
[ "nonn", "new" ]
10
1
1
[ "A000396", "A066191", "A066192", "A069519", "A091570", "A383428" ]
null
Amiram Eldar, Apr 27 2025
2025-04-27T09:08:37
oeisdata/seq/A383/A383428.seq
d67549bc4f421074fbaf625741fdb144
A383435
Number of minimum dominating sets in the n X n X n grid graph.
[ "1", "4", "3", "34872", "18" ]
[ "nonn", "more", "new" ]
4
1
2
null
null
Eric W. Weisstein, Apr 27 2025
2025-04-27T09:03:40
oeisdata/seq/A383/A383435.seq
5037c5c016b51689f85461d6c5c3975c
A383436
a(1) = 1; a(n) = 2 + n * Sum_{k=1..n-1} a(k).
[ "1", "4", "17", "90", "562", "4046", "33042", "302098", "3058742", "33986022", "411230866", "5383385882", "75816017838", "1143072268942", "18370804322282", "313528393766946", "5663106612415462", "107932149554271158", "2164639221616216002", "45571352034025600042", "1004848312350264480926", "23159361103691809941342" ]
[ "nonn", "new" ]
12
1
2
[ "A001339", "A007808", "A074143", "A082425", "A082427", "A082428", "A082430", "A383436", "A383437" ]
null
Seiichi Manyama, Apr 27 2025
2025-04-27T09:55:25
oeisdata/seq/A383/A383436.seq
ca6103cbb133ebdf481b6e9eb1f0e42c
A383437
a(1) = 1; a(n) = 5 + n * Sum_{k=1..n-1} a(k).
[ "1", "7", "29", "153", "955", "6875", "56145", "513325", "5197415", "57749055", "698763565", "9147450305", "128826591795", "1942308614755", "31215674165705", "532747505761365", "9622751822814655", "183398328858349895", "3678155373214684005", "77434849962414400105", "1707438441671237522315" ]
[ "nonn", "new" ]
12
1
2
[ "A001339", "A007808", "A074143", "A082425", "A082427", "A082428", "A082430", "A383436", "A383437" ]
null
Seiichi Manyama, Apr 27 2025
2025-04-27T09:55:01
oeisdata/seq/A383/A383437.seq
680b0aa8d01bb0c247d83843637a2def
A383438
a(n) = Sum_{k=1..n} Product_{p|k, p prime} k/p.
[ "1", "2", "3", "5", "6", "12", "13", "17", "20", "30", "31", "55", "56", "70", "85", "93", "94", "148", "149", "189", "210", "232", "233", "329", "334", "360", "369", "425", "426", "1326", "1327", "1343", "1376", "1410", "1445", "1661", "1662", "1700", "1739", "1899", "1900", "3664", "3665", "3753", "3888", "3934", "3935", "4319", "4326", "4576", "4627", "4731" ]
[ "nonn", "new" ]
12
1
2
[ "A205959", "A383438" ]
null
Peter Luschny, Apr 27 2025
2025-04-27T15:02:32
oeisdata/seq/A383/A383438.seq
eeeafd14b3aafa3d7945df4b320c3dc8
A383444
First differences of A377090.
[ "2", "-3", "2", "-3", "5", "-7", "-2", "3", "7", "2", "-11", "-2", "-2", "17", "-3", "2", "2", "-17", "-2", "-2", "23", "2", "-3", "2", "-23", "-2", "-2", "29", "2", "2", "-3", "-29", "-2", "-2", "37", "-2", "3", "-37", "-2", "-2", "43", "2", "-3", "-41", "-2", "-2", "47", "2", "2", "-53", "3", "-2", "-2", "53", "2", "2", "-59", "-2", "3", "-2", "59", "2", "2", "-67", "2", "67", "-3", "2", "-67", "-2", "71", "-73", "-2", "3", "73", "2", "-79", "2", "79", "-3", "2", "2", "-83", "-2", "-2", "3", "-2", "89" ]
[ "sign", "new" ]
6
0
1
null
null
N. J. A. Sloane, Apr 27 2025
2025-04-27T13:31:20
oeisdata/seq/A383/A383444.seq
a3feb3c4613a044c79e6c5d0a0353c38