fixed train and dev speaker overlap
Browse files- libritts-r-aligned.py +28 -12
libritts-r-aligned.py
CHANGED
@@ -26,7 +26,7 @@ _PATH = os.environ.get("LIBRITTS_PATH", os.environ.get("HF_DATASETS_CACHE", None
|
|
26 |
if _PATH is not None and not os.path.exists(_PATH):
|
27 |
os.makedirs(_PATH)
|
28 |
|
29 |
-
_VERSION = "1.0
|
30 |
|
31 |
_CITATION = """\
|
32 |
@article{koizumi2023libritts,
|
@@ -133,12 +133,11 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
133 |
data_train = self._create_data([ds_dict["train-clean-100"], ds_dict["train-clean-360"], ds_dict["train-other-500"]])
|
134 |
data_dev = self._create_data([ds_dict["dev-clean"], ds_dict["dev-other"]])
|
135 |
data_test = self._create_data([ds_dict["test-clean"], ds_dict["test-other"]])
|
136 |
-
data_all = pd.concat([data_train, data_dev, data_test])
|
137 |
splits += [
|
138 |
datasets.SplitGenerator(
|
139 |
name="train.all",
|
140 |
gen_kwargs={
|
141 |
-
"ds":
|
142 |
}
|
143 |
),
|
144 |
datasets.SplitGenerator(
|
@@ -154,13 +153,30 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
154 |
}
|
155 |
),
|
156 |
]
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
splits += [
|
165 |
datasets.SplitGenerator(
|
166 |
name="train",
|
@@ -171,7 +187,7 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
171 |
datasets.SplitGenerator(
|
172 |
name="dev",
|
173 |
gen_kwargs={
|
174 |
-
"ds":
|
175 |
}
|
176 |
),
|
177 |
]
|
@@ -234,6 +250,7 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
234 |
entries += add_entries
|
235 |
if self.empty_textgrids > 0:
|
236 |
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
|
|
|
237 |
return pd.DataFrame(
|
238 |
entries,
|
239 |
columns=[
|
@@ -247,7 +264,6 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
247 |
"basename",
|
248 |
],
|
249 |
)
|
250 |
-
del self.ds, self.phone_cache, self.phone_converter
|
251 |
|
252 |
def _create_entry(self, dsi_idx):
|
253 |
dsi, idx = dsi_idx
|
|
|
26 |
if _PATH is not None and not os.path.exists(_PATH):
|
27 |
os.makedirs(_PATH)
|
28 |
|
29 |
+
_VERSION = "1.1.0"
|
30 |
|
31 |
_CITATION = """\
|
32 |
@article{koizumi2023libritts,
|
|
|
133 |
data_train = self._create_data([ds_dict["train-clean-100"], ds_dict["train-clean-360"], ds_dict["train-other-500"]])
|
134 |
data_dev = self._create_data([ds_dict["dev-clean"], ds_dict["dev-other"]])
|
135 |
data_test = self._create_data([ds_dict["test-clean"], ds_dict["test-other"]])
|
|
|
136 |
splits += [
|
137 |
datasets.SplitGenerator(
|
138 |
name="train.all",
|
139 |
gen_kwargs={
|
140 |
+
"ds": data_train,
|
141 |
}
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
|
|
153 |
}
|
154 |
),
|
155 |
]
|
156 |
+
data_all = pd.concat([data_train, data_dev, data_test])
|
157 |
+
# create a new split which takes one sample from each speaker in data_all and puts it into the dev split
|
158 |
+
# we then remove these samples from data_all
|
159 |
+
speakers = data_all["speaker"].unique()
|
160 |
+
# seed for reproducibility
|
161 |
+
np.random.seed(42)
|
162 |
+
data_dev_all = None
|
163 |
+
for speaker in tqdm(speakers, desc="creating dev split"):
|
164 |
+
data_speaker = data_all[data_all["speaker"] == speaker]
|
165 |
+
if len(data_speaker) < 10:
|
166 |
+
print(f"Speaker {speaker} has only {len(data_speaker)} samples, skipping")
|
167 |
+
else:
|
168 |
+
data_speaker = data_speaker.sample(1)
|
169 |
+
data_all = data_all[data_all["audio"] != data_speaker["audio"].values[0]]
|
170 |
+
if data_dev_all is None:
|
171 |
+
data_dev_all = data_speaker
|
172 |
+
else:
|
173 |
+
data_dev_all = pd.concat([data_dev_all, data_speaker])
|
174 |
+
data_all = data_all[data_all["speaker"].isin(data_dev_all["speaker"].unique())]
|
175 |
+
self.speaker2idxs = {}
|
176 |
+
self.speaker2idxs["all"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_dev_all["speaker"].unique())))}
|
177 |
+
self.speaker2idxs["train"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_train["speaker"].unique())))}
|
178 |
+
self.speaker2idxs["dev"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_dev["speaker"].unique())))}
|
179 |
+
self.speaker2idxs["test"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_test["speaker"].unique())))}
|
180 |
splits += [
|
181 |
datasets.SplitGenerator(
|
182 |
name="train",
|
|
|
187 |
datasets.SplitGenerator(
|
188 |
name="dev",
|
189 |
gen_kwargs={
|
190 |
+
"ds": data_dev_all,
|
191 |
}
|
192 |
),
|
193 |
]
|
|
|
250 |
entries += add_entries
|
251 |
if self.empty_textgrids > 0:
|
252 |
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
|
253 |
+
del self.ds, self.phone_cache, self.phone_converter
|
254 |
return pd.DataFrame(
|
255 |
entries,
|
256 |
columns=[
|
|
|
264 |
"basename",
|
265 |
],
|
266 |
)
|
|
|
267 |
|
268 |
def _create_entry(self, dsi_idx):
|
269 |
dsi, idx = dsi_idx
|