File size: 10,049 Bytes
1022f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1ef87
1022f4b
 
7b1ef87
1022f4b
 
 
 
 
 
 
 
 
 
 
 
8501562
7b1ef87
 
1022f4b
 
 
 
 
 
 
 
7b1ef87
 
 
 
 
1022f4b
 
 
 
 
 
 
8501562
1022f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8501562
 
 
 
 
 
44c3aea
8501562
 
 
 
1022f4b
 
 
 
 
 
 
1b737b4
1022f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c3aea
 
 
 
 
 
1022f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1ef87
1022f4b
 
 
08b423e
 
 
 
 
 
 
 
 
1022f4b
1b737b4
1022f4b
 
 
1b737b4
44a5db7
1b737b4
1022f4b
1b737b4
 
 
 
 
44a5db7
 
1022f4b
 
 
44a5db7
1022f4b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""The IWSLT Challenge Dataset, adapted to punctuation as described by Ueffing et al. (2013)"""

from enum import Enum
from typing import Union
from abc import abstractmethod
import logging
import itertools

#import paired
from xml.dom import minidom
import nltk
import datasets
import numpy as np

nltk.download("punkt")
tknzr = nltk.tokenize.TweetTokenizer()

_CITATION = """\
@inproceedings{Ueffing2013,
    title={Improved models for automatic punctuation prediction for spoken and written text},
    author={B. Ueffing and M. Bisani and P. Vozila},
    booktitle={INTERSPEECH},
    year={2013}
}
@article{Federico2011,
    author = {M. Federico and L. Bentivogli and M. Paul and S. Stüker},
    year = {2011},
    month = {01},
    pages = {},
    title = {Overview of the IWSLT 2011 Evaluation Campaign},
    journal = {Proceedings of the International Workshop on Spoken Language Translation (IWSLT), San Francisco, CA}
}
"""

_DESCRIPTION = """\
Both manual transcripts and ASR outputs from the IWSLT2011 speech translation evalutation campaign are often used for the related \
punctuation annotation task. This dataset takes care of preprocessing said transcripts and automatically inserts punctuation marks \
given in the manual transcripts in the ASR outputs using Levenshtein aligment.
"""

_VERSION = "0.0.1"

def window(a, w = 4, o = 2):
    sh = (a.size - w + 1, w)
    st = a.strides * 2
    view = np.lib.stride_tricks.as_strided(a, strides = st, shape = sh)[0::o]
    return view.copy()

class Punctuation(Enum):
    NONE = "<none>"
    PERIOD = "<period>"
    COMMA = "<comma>"
    QUESTION = "<question>"

class LabelSubword(Enum):
    IGNORE = "<ignore>"
    NONE = "<none>"


class Task(Enum):
    TAGGING = 0
    SEQ2SEQ = 1

class TaggingTask:
    """Treat punctuation prediction as a sequence tagging problem."""

    def __init__(
        self, window_size=120, window_stride=60
    ):
        self.window_size = window_size
        self.window_stride = window_stride

    def __eq__(self, other):
        return Task.TAGGING == other

class IWSLT11Config(datasets.BuilderConfig):
    """The IWSLT11 Dataset."""

    def __init__(
        self,
        segmented: bool = False,
        asr_or_ref: str = "ref",
        tokenizer = None,
        label_subword = LabelSubword.IGNORE,
        window_size = None,
        window_stride = None,
        **kwargs
    ):
        """BuilderConfig for IWSLT2011.
        Args:
          task: the task to prepare the dataset for.
          segmented: if segmentation present in IWSLT2011 should be respected. removes segmenation by default.
          **kwargs: keyword arguments forwarded to super.
        """
        self.task = TaggingTask()
        if window_size is not None:
            self.task.window_size = window_size
        if window_stride is not None:
            self.task.window_stride = window_stride
        self.segmented = segmented
        self.asr_or_ref = asr_or_ref
        self.punctuation = [
            Punctuation.NONE,
            Punctuation.PERIOD,
            Punctuation.COMMA,
            Punctuation.QUESTION,
            label_subword.IGNORE
        ]
        self.label_subword = label_subword
        self.tokenizer = tokenizer
        super(IWSLT11Config, self).__init__(**kwargs)

    def __eq__(self, other):
        return True


class IWSLT11(datasets.GeneratorBasedBuilder):
    """The IWSLT11 Dataset, adapted for punctuation prediction."""

    BUILDER_CONFIGS = [
        IWSLT11Config(name="ref", asr_or_ref="ref"),
        IWSLT11Config(name="asr", asr_or_ref="asr"),
    ]

    def __init__(self, *args, **kwargs):
            if 'label_subword' in kwargs:
                label_subword = kwargs['label_subword']
                if isinstance(label_subword, str):
                    if 'ignore' == label_subword.lower():
                        label_subword = LabelSubword.IGNORE
                    elif 'none' == label_subword.lower():
                        label_subword = LabelSubword.NONE
                kwargs['label_subword'] = label_subword
            super(IWSLT11, self).__init__(*args, **kwargs)

    def _info(self):
        if self.config.task == Task.TAGGING:
            return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                    {
                        "ids": datasets.Sequence(datasets.Value("int32")),
                        "tokens": datasets.Sequence(datasets.Value("int32")),
                        "labels": datasets.Sequence(
                           datasets.features.ClassLabel(
                               names=[p.name for p in self.config.punctuation]
                           )
                        ),
                    }
                ),
                supervised_keys=None,
                homepage="http://iwslt2011.org/doku.php",
                citation=_CITATION,
                version=_VERSION,
            )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        urls_to_download = {
            "train": "https://raw.githubusercontent.com/IsaacChanghau/neural_sequence_labeling/master/data/raw/LREC_converted/train.txt",
            "valid": "https://github.com/IsaacChanghau/neural_sequence_labeling/blob/master/data/raw/LREC_converted/dev.txt?raw=true",
            "test_ref": "https://github.com/IsaacChanghau/neural_sequence_labeling/raw/master/data/raw/LREC_converted/ref.txt",
            "test_asr": "https://github.com/IsaacChanghau/neural_sequence_labeling/raw/master/data/raw/LREC_converted/asr.txt",
        }
        files = dl_manager.download_and_extract(urls_to_download)

        if self.config.asr_or_ref == "asr":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": files["train"]
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": files["valid"]
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": files["test_asr"]
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": files["train"]
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": files["valid"]
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": files["test_ref"]
                    },
                ),
            ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)

        text = open(filepath).read()
        text = (
            text
            .replace(',COMMA', ',')
            .replace('.PERIOD', '.')
            .replace('?QUESTIONMARK', '?')
        )
        tokens = []
        labels = []
        for token in tknzr.tokenize(text):
            if token in [',', '.', '?']:
                if ',' in token:
                    labels[-1] = Punctuation.COMMA
                if '.' in token:
                    labels[-1] = Punctuation.PERIOD
                if '?' in token:
                    labels[-1] = Punctuation.QUESTION
            else:
                labels.append(Punctuation.NONE)
                tokens.append(token)

        tokens = np.array(tokens)
        labels = np.array(labels)
        token_len = len(tokens)
        assert len(tokens) == len(labels)

        if self.config.task == Task.TAGGING:
            def apply_window(l):
                return window(
                    l,
                    self.config.task.window_size,
                    self.config.task.window_stride
                )
            ids = apply_window(np.arange(len(tokens)))
            tokens = apply_window(tokens)
            tokens = self.config.tokenizer(
                [t.tolist() for t in tokens],
                is_split_into_words=True,
                return_offsets_mapping=True,
                padding=True,
                truncation=True,
                max_length=int(self.config.task.window_size*2),
                pad_to_multiple_of=int(self.config.task.window_size*2)
            )
            labels = apply_window(labels)
            for i, (ids, labels) in enumerate(zip(ids, labels)):
                if self.config.tokenizer is None:
                    raise ValueError('tokenizer argument has to be passed to load_dataset')
                else:
                    words = tokens[i].words
                    input_ids = tokens['input_ids'][i]
                    offsets = np.array(tokens['offset_mapping'][i])
                    enc_labels = np.array([self.config.label_subword.name]*len(offsets), dtype=object)
                    count = 0
                    for j, word_id in enumerate(words):
                        if word_id is not None and (j == 0 or words[j-1] != word_id):
                            enc_labels[j] = labels[count].name
                            count += 1
                        elif input_ids[j] == self.config.tokenizer.pad_token_id:
                            enc_labels[j] = LabelSubword.IGNORE.name
                    labels = enc_labels
                yield i, {
                            "ids": ids,
                            "tokens": input_ids,
                            "labels": labels,
                        }
            logging.info(f"Loaded number of tokens = {token_len}")