Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
Spanish
Size:
10K<n<100K
ArXiv:
License:
File size: 5,480 Bytes
8f1868b 7782c76 8f1868b 7782c76 8f1868b 7782c76 8f1868b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""TODO(squad_es): Add a description here."""
import json
import datasets
# TODO(squad_es): BibTeX citation
_CITATION = """\
@article{2016arXiv160605250R,
author = {Casimiro Pio , Carrino and Marta R. , Costa-jussa and Jose A. R. , Fonollosa},
title = "{Automatic Spanish Translation of the SQuAD Dataset for Multilingual
Question Answering}",
journal = {arXiv e-prints},
year = 2019,
eid = {arXiv:1912.05200v1},
pages = {arXiv:1912.05200v1},
archivePrefix = {arXiv},
eprint = {1912.05200v2},
}
"""
# TODO(squad_es_v1):
_DESCRIPTION = """\
automatic translation of the Stanford Question Answering Dataset (SQuAD) v2 into Spanish
"""
_URL = "https://raw.githubusercontent.com/ccasimiro88/TranslateAlignRetrieve/master/"
_URLS_V1 = {
"train": _URL + "SQuAD-es-v1.1/train-v1.1-es.json",
"dev": _URL + "SQuAD-es-v1.1/dev-v1.1-es.json",
}
_URLS_V2 = {
"train": _URL + "SQuAD-es-v2.0/train-v2.0-es.json",
"dev": _URL + "SQuAD-es-v2.0/dev-v2.0-es.json",
}
class SquadEsConfig(datasets.BuilderConfig):
"""BuilderConfig for SQUADEsV2."""
def __init__(self, **kwargs):
"""BuilderConfig for SQUADEsV2.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SquadEsConfig, self).__init__(**kwargs)
class SquadEs(datasets.GeneratorBasedBuilder):
"""TODO(squad_es): Short description of my dataset."""
# TODO(squad_es): Set up version.
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
SquadEsConfig(
name="v1.1.0",
version=datasets.Version("1.1.0", ""),
description="Plain text Spanish squad version 1",
),
SquadEsConfig(
name="v2.0.0",
version=datasets.Version("2.0.0", ""),
description="Plain text Spanish squad version 2",
),
]
def _info(self):
# TODO(squad_es): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
# These are the features of your dataset like images, labels ...
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/ccasimiro88/TranslateAlignRetrieve",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(squad_es): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
if self.config.name == "v1.1.0":
dl_dir = dl_manager.download_and_extract(_URLS_V1)
elif self.config.name == "v2.0.0":
dl_dir = dl_manager.download_and_extract(_URLS_V2)
else:
raise Exception("version does not match any existing one")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["dev"]},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(squad_es): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for example in data["data"]:
title = example.get("title", "").strip()
for paragraph in example["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
|