post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2846874/Python-oror-DP%2BMemoization-oror-Explained | class Solution:
def beautifulPartitions(self, s: str, k: int, min_len: int) -> int:
n=len(s)
mod=10**9+7
prime=set(['2','3','5','7'])
if s[0] not in prime or s[-1] in prime: return 0
arr=[]
last,i=0,1
while i<n:
if (i==n-1) or (s[i] not in prime and s[i+1] in prime):
arr.append(i-last+1)
last=i+1
i+=2
else:
i+=1
pre_sum={-1:0}
m=len(arr)
next_idx=[-1]*m
for i,val in enumerate(arr):
pre_sum[i]=pre_sum[i-1]+val
for i in range(m):
for j in range(i+1,m+1):
if pre_sum[j-1]-pre_sum[i-1]>=min_len:
next_idx[i]=j-1
break
@cache
def dp(idx,length,started):
if idx==m:
return 1 if (length==k and not started) else 0
ans=0
if started:
#end here
ans+=dp(idx+1,length+1,0)
#don't end here
ans+=dp(idx+1,length,1)
else:
#start from here
if next_idx[idx]!=-1:
ans+=dp(next_idx[idx],length,1)
return ans%mod
return dp(0,0,0) | number-of-beautiful-partitions | Python || DP+Memoization || Explained | ketan_raut | 0 | 5 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,000 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2835340/My-Python3-solution | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
n, primes, mod = len(s), set('2357'), (10 ** 9) + 7
@cache
def dp(i, at_start, k):
if i == n: return int(k == 0)
if i > n or k == 0 or s[i] not in primes and at_start: return 0
if s[i] in primes:
if at_start: return dp(i + minLength - 1, False, k)
else: return dp(i + 1, False, k)
return (dp(i + 1, True, k - 1) + dp(i + 1, False, k)) % mod
return dp(0, True, k) | number-of-beautiful-partitions | My Python3 solution | Chiki1601 | 0 | 7 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,001 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2834324/Python3-bottom-up-dp | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
prime = "2357"
dp = [[0]*(len(s)+1) for _ in range(k)]
if s[0] in prime and s[-1] not in prime:
for j in range(len(s)+1): dp[0][j] = 1
for i in range(1, k):
for j in range(len(s)-1, -1, -1):
dp[i][j] = dp[i][j+1]
if minLength <= j <= len(s)-minLength and s[j-1] not in prime and s[j] in prime:
dp[i][j] = (dp[i][j] + dp[i-1][j+minLength]) % 1_000_000_007
return dp[-1][0] | number-of-beautiful-partitions | [Python3] bottom-up dp | ye15 | 0 | 14 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,002 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2832507/Over-optimized-O(nk)-dp-solution-~400-ms | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
mod = 10 ** 9 + 7
n = len(s)
prime = {'2', '3', '5', '7'}
if s[0] in prime and s[-1] not in prime:
op = []
for i in range(1, n - 1):
if s[i] not in prime and s[i + 1] in prime:
op.append(i + 1)
op.append(n)
m = len(op)
dp = [[] for _ in range(m)]
pos = 0
j = 0
while j < m and op[j] - pos < minLength:
j += 1
if j < m:
dp[j] = [0, 1]
for i, pos in enumerate(op):
if i:
length = len(dp[i - 1])
dp[i].extend([0] * (length - len(dp[i])))
for index in range(1, length):
dp[i][index] += dp[i - 1][index]
dp[i][index] %= mod
while j < m and op[j] - pos < minLength:
j += 1
if j < m:
length = min(k + 1, len(dp[i]) + 1)
dp[j].extend([0] * (length - len(dp[j])))
for index in range(1, length):
dp[j][index] += dp[i][index - 1]
dp[j][index] %= mod
return dp[-1][-1] if len(dp[-1]) == (k + 1) else 0
else:
return 0 | number-of-beautiful-partitions | Over-optimized O(nk) dp solution, ~400 ms | chuan-chih | 0 | 21 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,003 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2832418/python3-DP-%2B-accumulative-sum-O(n*k) | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
primes = {'2','3','5','7'}
# prunning
if len(s) < k*minLength or s[0] not in primes or s[-1] in primes:
return 0
dd_int = functools.partial(defaultdict, int)
dp = defaultdict(dd_int)
dp[-1][0] = 1
stack = []
MOD = 10**9+7
accSum = [0] * (k+1)
j = 0
for i in range(len(s)):
if s[i] in primes:
if s[i-1] not in primes: # prunning
stack.append(i)
continue
while j < len(stack):
if i-stack[j]+1 < minLength:
break
for u in range(k+1):
accSum[u] = (accSum[u] + dp[stack[j]-1][u]) % MOD
j += 1
for u in range(1, k+1):
dp[i][u] = accSum[u-1]
return dp[len(s)-1][k] | number-of-beautiful-partitions | [python3] DP + accumulative sum O(n*k) | hieuvpm | 0 | 18 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,004 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2832064/O(nk)-time-complexity-O(n)-space-complexity-DP | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
n = len(s)
mod = 10 ** 9 + 7
if k * minLength > n:
return 0
dp = [[0] * (2) for _ in range(n+1)]
dp[0][0] = 1
prime_indices = [i + 1 for i in range(n) if s[i] in '2357']
m = len(prime_indices)
for j in range(1, k + 1):
prefix_sum = 0
left = 0
for i in range(n + 1):
if i < j * minLength:
dp[i][j%2] = 0
continue
if s[i - 1] in '2357':
dp[i][j%2] = 0
continue
while left < m and i - prime_indices[left] + 1 >= minLength:
prefix_sum += dp[prime_indices[left] - 1][(j - 1)%2]
left += 1
dp[i][j%2] = prefix_sum
dp[i][j%2] %= mod
return dp[-1][k%2] % mod | number-of-beautiful-partitions | O(nk) time complexity, O(n) space complexity DP | zhanghaotian19 | 0 | 20 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,005 |
https://leetcode.com/problems/number-of-beautiful-partitions/discuss/2831967/Fastest-Python-solution-so-far | class Solution:
def beautifulPartitions(self, s: str, k: int, minLength: int) -> int:
s=list(s)
l0=len(s)
prime={'2', '3', '5', '7'}
for i in range(l0):
s[i]=s[i] in prime
if not s[0]:
return 0
if s[-1]:
return 0
p=10**9+7
stops=[0]
for i in range(l0-1):
if (not s[i]) and s[i+1]:
stops.append(i+1)
l1=len(stops)
def bp(i, k):
if l0-stops[i]<k*minLength:
return 0
if k==1:
return 1
i1=i+1
while i1<l1 and stops[i1]<stops[i]+minLength:
i1+=1
return sm[i1]%p
for j in range(1, k+1):
table=[bp(i, j) for i in range(l1)]
sm=[]
tmp=0
for t in table:
sm.append(tmp)
tmp+=t
sm.append(tmp)
for i in range(l1+1):
sm[i]=tmp-sm[i]
return table[0] | number-of-beautiful-partitions | Fastest Python solution so far | mbeceanu | 0 | 40 | number of beautiful partitions | 2,478 | 0.294 | Hard | 34,006 |