carlosdanielhernandezmena commited on
Commit
0445f89
1 Parent(s): 2e14e74

Delete loading script

Browse files
Files changed (1) hide show
  1. toy_corpus_asr_es.py +0 -149
toy_corpus_asr_es.py DELETED
@@ -1,149 +0,0 @@
1
- from collections import defaultdict
2
- import os
3
- import json
4
- import csv
5
-
6
- import datasets
7
-
8
- _NAME="toy_corpus_asr_es"
9
- _VERSION="1.0.0"
10
- _AUDIO_EXTENSIONS=".flac"
11
-
12
- _DESCRIPTION = """
13
- An extremely small corpus of 40 audio files taken from Common Voice (es) with the objective of testing how to share datasets in Hugging Face.
14
- """
15
-
16
- _CITATION = """
17
- @misc{toy_corpus_asr_es,
18
- title={Toy Corpus for ASR in Spanish.},
19
- author={Hernandez Mena, Carlos Daniel},
20
- year={2022},
21
- url={https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es},
22
- }
23
- """
24
-
25
- _HOMEPAGE = "https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es"
26
-
27
- _LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"
28
-
29
- _BASE_DATA_DIR = "corpus/"
30
- _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
31
- _METADATA_TEST = os.path.join(_BASE_DATA_DIR,"files", "metadata_test.tsv")
32
- _METADATA_DEV = os.path.join(_BASE_DATA_DIR,"files", "metadata_dev.tsv")
33
-
34
- _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
35
- _TARS_TEST = os.path.join(_BASE_DATA_DIR,"files", "tars_test.paths")
36
- _TARS_DEV = os.path.join(_BASE_DATA_DIR,"files", "tars_dev.paths")
37
-
38
- class ToyCorpusAsrEsConfig(datasets.BuilderConfig):
39
- """BuilderConfig for Toy Corpus ASR ES."""
40
-
41
- def __init__(self, name, **kwargs):
42
- name=_NAME
43
- super().__init__(name=name, **kwargs)
44
-
45
- class ToyCorpusAsrEs(datasets.GeneratorBasedBuilder):
46
- """The Toy Corpus ASR ES dataset."""
47
-
48
- VERSION = datasets.Version(_VERSION)
49
- BUILDER_CONFIGS = [
50
- ToyCorpusAsrEsConfig(
51
- name=_NAME,
52
- version=datasets.Version(_VERSION),
53
- )
54
- ]
55
-
56
- def _info(self):
57
- features = datasets.Features(
58
- {
59
- "audio_id": datasets.Value("string"),
60
- "audio": datasets.Audio(sampling_rate=16000),
61
- "split": datasets.Value("string"),
62
- "gender": datasets.Value("string"),
63
- "normalized_text": datasets.Value("string"),
64
- "relative_path": datasets.Value("string"),
65
- }
66
- )
67
- return datasets.DatasetInfo(
68
- description=_DESCRIPTION,
69
- features=features,
70
- homepage=_HOMEPAGE,
71
- license=_LICENSE,
72
- citation=_CITATION,
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
-
77
- metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
78
- metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
79
- metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)
80
-
81
- tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
82
- tars_test=dl_manager.download_and_extract(_TARS_TEST)
83
- tars_dev=dl_manager.download_and_extract(_TARS_DEV)
84
-
85
- hash_tar_files=defaultdict(dict)
86
- with open(tars_train,'r') as f:
87
- hash_tar_files['train']=[path.replace('\n','') for path in f]
88
-
89
- with open(tars_test,'r') as f:
90
- hash_tar_files['test']=[path.replace('\n','') for path in f]
91
-
92
- with open(tars_dev,'r') as f:
93
- hash_tar_files['dev']=[path.replace('\n','') for path in f]
94
-
95
- hash_meta_paths={"train":metadata_train,"test":metadata_test,"dev":metadata_dev}
96
- audio_paths = dl_manager.download(hash_tar_files)
97
-
98
- splits=["train","dev","test"]
99
- local_extracted_audio_paths = (
100
- dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
101
- {
102
- split:[None] * len(audio_paths[split]) for split in splits
103
- }
104
- )
105
-
106
- return [
107
- datasets.SplitGenerator(
108
- name=datasets.Split.TRAIN,
109
- gen_kwargs={
110
- "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
111
- "local_extracted_archives_paths": local_extracted_audio_paths["train"],
112
- "metadata_paths": hash_meta_paths["train"],
113
- }
114
- ),
115
- datasets.SplitGenerator(
116
- name=datasets.Split.VALIDATION,
117
- gen_kwargs={
118
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
119
- "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
120
- "metadata_paths": hash_meta_paths["dev"],
121
- }
122
- ),
123
- datasets.SplitGenerator(
124
- name=datasets.Split.TEST,
125
- gen_kwargs={
126
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
127
- "local_extracted_archives_paths": local_extracted_audio_paths["test"],
128
- "metadata_paths": hash_meta_paths["test"],
129
- }
130
- ),
131
- ]
132
-
133
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
134
-
135
- features = ["normalized_text","gender","split","relative_path"]
136
-
137
- with open(metadata_paths) as f:
138
- metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
139
-
140
- for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
141
- for audio_filename, audio_file in audio_archive:
142
- #audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
143
- audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
144
- path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
145
- yield audio_id, {
146
- "audio_id": audio_id,
147
- **{feature: metadata[audio_id][feature] for feature in features},
148
- "audio": {"path": path, "bytes": audio_file.read()},
149
- }