Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 8,526 Bytes
29fd70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1be7c
29fd70e
 
 
04a18f3
29fd70e
 
 
 
 
 
dc1be7c
 
 
 
 
ab3cdaf
dc1be7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6566d
dc1be7c
 
4c6566d
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1be7c
 
cb81707
dc1be7c
 
 
9679f2f
ab58ad6
 
 
 
 
 
 
 
 
 
 
 
9679f2f
dc1be7c
29fd70e
 
 
 
 
 
 
 
 
 
 
4a40752
29fd70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a18f3
 
 
 
 
 
 
 
 
 
 
 
 
 
29fd70e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
---

# Dataset Card for "cardiffnlp/tweet_topic_single"

## Dataset Description

- **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824)
- **Dataset:** Tweet Topic Dataset
- **Domain:** Twitter
- **Number of Class:** 6


### Dataset Summary
This is the official repository of TweetTopic (["Twitter Topic Classification
, COLING main conference 2022"](https://arxiv.org/abs/2209.09824)), a topic classification dataset on Twitter with 6 labels.
Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
See [cardiffnlp/tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) for multi label version of TweetTopic.
The tweet collection used in TweetTopic is same as what used in [TweetNER7](https://huggingface.co/datasets/tner/tweetner7).
The dataset is integrated in [TweetNLP](https://tweetnlp.org/) too.

### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name (or account name) with symbols `{@}`.
For example, a tweet
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below: 
http://bluenote.lnk.to/AlbumOfTheWeek
```
is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below: {{URL}}
```
A simple function to format tweet follows below.
```python
import re
from urlextract import URLExtract
extractor = URLExtract()
def format_tweet(tweet):
    # mask web urls
    urls = extractor.find_urls(tweet)
    for url in urls:
        tweet = tweet.replace(url, "{{URL}}")
    # format twitter account
    tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
    return tweet
target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
target_format = format_tweet(target)
print(target_format)
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
```


### Data Splits

| split                   | number of texts | description |
|:------------------------|-----:|------:|
| test_2020               |  376 | test dataset from September 2019 to August 2020 |
| test_2021               | 1693 | test dataset from September 2020 to August 2021 |
| train_2020              | 2858 | training dataset from September 2019 to August 2020 |
| train_2021              | 1516 | training dataset from September 2020 to August 2021 |
| train_all               | 4374 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020         |  352 | validation dataset from September 2019 to August 2020 |
| validation_2021         |  189 | validation dataset from September 2020 to August 2021 | 
| train_random            | 2830 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random       |  354 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| test_coling2022_random  | 3399 | random split used in the COLING 2022 paper |
| train_coling2022_random | 3598 | random split used in the COLING 2022 paper |
| test_coling2022         | 3399 | temporal split used in the COLING 2022 paper |
| train_coling2022        | 3598 | temporal split used in the COLING 2022 paper |

For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.

**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).

### Models

| model                                                                                                                                                       | training data     |       F1 |   F1 (macro) |   Accuracy |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|---------:|-------------:|-----------:|
| [cardiffnlp/roberta-large-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-all)                                   | all (2020 + 2021) | 0.896043 |     0.800061 |   0.896043 |
| [cardiffnlp/roberta-base-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-all)                                     | all (2020 + 2021) | 0.887773 |     0.79793  |   0.887773 |
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all)   | all (2020 + 2021) | 0.892499 |     0.774494 |   0.892499 |
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all)     | all (2020 + 2021) | 0.890136 |     0.776025 |   0.890136 |
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all)     | all (2020 + 2021) | 0.894861 |     0.800952 |   0.894861 |
| [cardiffnlp/roberta-large-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-2020)                                 | 2020 only         | 0.878913 |     0.70565  |   0.878913 |
| [cardiffnlp/roberta-base-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-2020)                                   | 2020 only         | 0.868281 |     0.729667 |   0.868281 |
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020) | 2020 only         | 0.882457 |     0.740187 |   0.882457 |
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020)   | 2020 only         | 0.87596  |     0.746275 |   0.87596  |
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020)   | 2020 only         | 0.877732 |     0.746119 |   0.877732 |

Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py).

## Dataset Structure

### Data Instances
An example of `train` looks as follows.

```python
{
    "text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!",
    "date": "2019-09-08",
    "label": 4,
    "id": "1170606779568463874",
    "label_name": "sports_&_gaming"
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json).
```python
{
    "arts_&_culture": 0,
    "business_&_entrepreneurs": 1,
    "pop_culture": 2,
    "daily_life": 3,
    "sports_&_gaming": 4,
    "science_&_technology": 5
}
```

### Citation Information

```
@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}
```