asahi417 commited on
Commit
92b61fd
1 Parent(s): fca2235
training_scripts/finetune_t5.py CHANGED
@@ -24,6 +24,9 @@ from huggingface_hub import Repository
24
 
25
  os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message
26
  os.environ['WANDB_DISABLED'] = 'true' # disable wandb
 
 
 
27
 
28
 
29
  def load_model(
@@ -44,23 +47,7 @@ def load_model(
44
  else:
45
  raise ValueError(f'unsupported model type: {config.model_type}')
46
  param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage}
47
- model = model_class(model_name, **param)
48
- return model
49
-
50
-
51
- def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> Dict[str, float]:
52
- scores = []
53
- for g, r in zip(references, predictions):
54
- tp = len(set(g).intersection(set(r)))
55
- fp = len([_g for _g in g if _g not in r])
56
- fn = len([_r for _r in r if _r not in g])
57
- if tp == 0:
58
- f1 = 0
59
- else:
60
- f1 = 2 * tp / (2 * tp + fp + fn)
61
- scores.append(f1)
62
- return {'f1': mean(scores)}
63
-
64
 
65
  def train(
66
  model_name: str,
@@ -69,201 +56,245 @@ def train(
69
  dataset_name: str,
70
  dataset_column_label: str,
71
  dataset_column_text: str,
72
- dataset_split_train: str,
73
- dataset_split_validation: str,
74
- dataset_split_test: str,
75
- lr: List,
76
- epoch: List,
77
- batch: List,
78
- down_sample_train: int,
79
- down_sample_validation: int,
80
  random_seed: int,
81
- use_auth_token: bool,
82
- output_dir: str,
83
- model_alias: str,
84
- model_organization: str,
85
- skip_train: bool = False,
86
- skip_test: bool = False,
87
- skip_upload: bool = False,
88
- batch_eval: int = None):
89
  """Fine-tune seq2seq model."""
90
  logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
91
- if not output_dir:
92
- output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
93
- # dataset process
94
- tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
95
- dataset_split = {
96
- 'train': [dataset_split_train, down_sample_train],
97
- 'validation': [dataset_split_validation, down_sample_validation]
98
- }
99
- dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token)
100
- tokenized_dataset = {}
101
- for s, (s_dataset, down_sample) in dataset_split.items():
102
- tokenized_dataset[s] = []
103
- dataset_tmp = dataset_instance[s_dataset]
104
- dataset_tmp.shuffle(random_seed)
105
- for i in dataset_tmp:
106
- model_inputs = tokenizer(i[dataset_column_text], truncation=True)
107
- model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
108
- tokenized_dataset[s].append(model_inputs)
109
-
110
- if down_sample is not None and len(dataset_tmp) > down_sample:
111
- tokenized_dataset[f'{s}_ds'] = []
112
- dataset_tmp = dataset_tmp.select(list(range(down_sample)))
113
- for i in dataset_tmp:
114
- model_inputs = tokenizer(i[dataset_column_text], truncation=True)
115
- model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
116
- tokenized_dataset[f'{s}_ds'].append(model_inputs)
117
- else:
118
- tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s]
119
 
120
- def compute_metric(eval_pred) -> Dict[str, float]: # for parameter search
121
-
122
- def decode_tokens(token_ids) -> List[Set[str]]:
123
- return [
124
- set(tokenizer.decode(list(filter(lambda x: x != -100, r)), skip_special_tokens=True).split(',')) for r
125
- in token_ids
126
- ]
127
-
128
- predictions, reference_token_ids = eval_pred
129
- # format reference
130
- references_decode = decode_tokens(reference_token_ids)
131
- # format prediction
132
- logit, loss = predictions
133
- generation_token_id = logit.argmax(-1)
134
- generation_token_id[logit.min(-1) == -100] = -100
135
- generation_decode = decode_tokens(generation_token_id)
136
- return get_f1_score(references_decode, generation_decode)
137
-
138
- if not skip_train:
139
- lr = [1e-6, 1e-5, 1e-4] if lr is None else lr
140
- batch = [32] if not batch else batch
141
- epoch = [3, 5] if not epoch else epoch
142
- batch_eval = min(batch) if not batch_eval else batch_eval
143
- for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
144
- logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
145
- output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}_batch_{batch_tmp}_epoch_{epoch_tmp}"
146
- if os.path.exists(f"{output_dir_tmp}/eval_results.json"):
147
- continue
148
- model = load_model(
149
- model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
150
- )
151
- trainer = Seq2SeqTrainer(
152
- model=model,
153
- args=Seq2SeqTrainingArguments(
154
- num_train_epochs=epoch_tmp,
155
- learning_rate=lr_tmp,
156
- output_dir=output_dir_tmp,
157
- evaluation_strategy="no",
158
- per_device_eval_batch_size=batch_eval,
159
- seed=random_seed,
160
- per_device_train_batch_size=batch_tmp,
161
- ),
162
- data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model),
163
- train_dataset=tokenized_dataset['train_ds'],
164
- eval_dataset=tokenized_dataset['validation_ds'],
165
- compute_metrics=compute_metric,
166
- )
167
- # train
168
- result = trainer.train()
169
- trainer.log_metrics("train", result.metrics)
170
- trainer.save_metrics("train", result.metrics)
171
- # evaluate
172
- metrics = trainer.evaluate()
173
- trainer.log_metrics("eval", metrics)
174
- trainer.save_metrics("eval", metrics)
175
- # clean up memory
176
- trainer.save_model()
177
- trainer.save_state()
178
- del trainer
179
- del model
180
- gc.collect()
181
- torch.cuda.empty_cache()
182
- # cuda.get_current_device().reset()
183
-
184
- model_score = []
185
- for eval_file in glob(f"{output_dir}/model_*/eval_results.json"):
186
- with open(eval_file) as f:
187
- results = json.load(f)
188
- model_score.append([os.path.dirname(eval_file), results['eval_loss'], results['eval_f1']])
189
- logging.info("Search Result")
190
- for i in model_score:
191
- logging.info(i)
192
- max_metric = max(model_score, key=lambda x: x[2])
193
- if len([i for i in model_score if i[2] == max_metric]) > 1:
194
- best_model = sorted(model_score, key=lambda x: x[1])[0][0]
195
- else:
196
- best_model = sorted(model_score, key=lambda x: x[2])[-1][0]
197
- copy_tree(best_model, f'{output_dir}/best_model')
198
- tokenizer.save_pretrained(f'{output_dir}/best_model')
199
- else:
200
- logging.info('skip hyperparameter search & model training (already done)')
201
-
202
- # get metric on the test set
203
- if not skip_test:
204
- logging.info('run evaluation on test set')
205
- if not os.path.exists(f'{output_dir}/best_model/prediction_test.txt'):
206
- pipe = pipeline(
207
- 'text2text-generation',
208
- model=f'{output_dir}/best_model',
209
- device='cuda:0' if torch.cuda.is_available() else 'cpu',
210
- )
211
- input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
212
- output = pipe(input_data, batch_size=batch_eval)
213
- output = [i['generated_text'] for i in output]
214
- with open(f'{output_dir}/best_model/prediction_test.txt', 'w') as f:
215
- f.write('\n'.join(output))
216
- with open(f'{output_dir}/best_model/prediction_test.txt') as f:
217
- output = [set(i.split(',')) for i in f.read().split('\n')]
218
- dataset_tmp = dataset_instance[dataset_split_test]
219
- label_list = dataset_tmp[dataset_column_label]
220
- _references = [
221
- set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp
222
- ]
223
- eval_metric = get_f1_score(_references, output)
224
- eval_metric[f'f1/{dataset}/{dataset_name}'] = eval_metric.pop('f1')
225
- logging.info(json.dumps(eval_metric, indent=4))
226
- with open(f'{output_dir}/best_model/evaluation_metrics.json', 'w') as f:
227
- json.dump(eval_metric, f)
228
-
229
- if not skip_upload:
230
- assert model_alias is not None and model_organization is not None,\
231
- 'model_organization must be specified when model_alias is specified'
232
- logging.info('uploading to huggingface')
233
- args = {'use_auth_token': use_auth_token, 'organization': model_organization}
234
- model = load_model(model_name=f'{output_dir}/best_model')
235
- model.push_to_hub(model_alias, **args)
236
- tokenizer.push_to_hub(model_alias, **args)
237
- repo = Repository(model_alias, f'{model_organization}/{model_alias}')
238
- if os.path.exists(f'{output_dir}/best_model/prediction_test.txt'):
239
- copyfile(f'{output_dir}/best_model/prediction_test.txt', f'{model_alias}/prediction_test.txt')
240
- if os.path.exists(f'{output_dir}/best_model/evaluation_metrics.json'):
241
- copyfile(f'{output_dir}/best_model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json')
242
- sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]]
243
- sample = [i for i in sample if ''' not in i and ''' not in i][:3]
244
- widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)])
245
- with open(f'{model_alias}/README.md', 'w') as f:
246
- f.write(f"""
247
- ---
248
- widget:
249
- {widget}
250
- ---
251
-
252
- # {model_organization}/{model_alias}
253
-
254
- This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}).
255
-
256
- ### Usage
257
-
258
- ```python
259
- from transformers import pipeline
260
-
261
- pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}')
262
- output = pipe('{sample[0]}')
263
- ```
264
- """)
265
- repo.push_to_hub()
266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
  if __name__ == '__main__':
269
  # arguments
@@ -302,21 +333,6 @@ if __name__ == '__main__':
302
  dataset_name=opt.dataset_name,
303
  dataset_column_label=opt.dataset_column_label,
304
  dataset_column_text=opt.dataset_column_text,
305
- dataset_split_train=opt.dataset_split_train,
306
- dataset_split_validation=opt.dataset_split_validation,
307
- dataset_split_test=opt.dataset_split_test,
308
- lr=opt.lr,
309
- epoch=opt.epoch,
310
- batch=opt.batch,
311
- batch_eval=opt.batch_eval,
312
- down_sample_train=opt.down_sample_train,
313
- down_sample_validation=opt.down_sample_validation,
314
  random_seed=opt.random_seed,
315
  use_auth_token=opt.use_auth_token,
316
- output_dir=opt.output_dir,
317
- model_alias=opt.model_alias,
318
- model_organization=opt.model_organization,
319
- skip_train=opt.skip_train,
320
- skip_test=opt.skip_test,
321
- skip_upload=opt.skip_upload
322
  )
 
24
 
25
  os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message
26
  os.environ['WANDB_DISABLED'] = 'true' # disable wandb
27
+ _LR = [1e-6, 1e-5, 1e-4]
28
+ _BATCH = 32
29
+ _EPOCH = 5
30
 
31
 
32
  def load_model(
 
47
  else:
48
  raise ValueError(f'unsupported model type: {config.model_type}')
49
  param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage}
50
+ return model_class(model_name, **param)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  def train(
53
  model_name: str,
 
56
  dataset_name: str,
57
  dataset_column_label: str,
58
  dataset_column_text: str,
 
 
 
 
 
 
 
 
59
  random_seed: int,
60
+ use_auth_token: bool):
 
 
 
 
 
 
 
61
  """Fine-tune seq2seq model."""
62
  logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
63
+ output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
66
+ dataset_instance = load_dataset(dataset, dataset_name, split="train", use_auth_token=use_auth_token)
67
+ tokenized_dataset = []
68
+ for d in dataset_instance:
69
+ model_inputs = tokenizer(d[dataset_column_text], truncation=True)
70
+ model_inputs['labels'] = tokenizer(text_target=d[dataset_column_label], truncation=True)['input_ids']
71
+ tokenized_dataset.append(model_inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
+ for n, lr_tmp in enumerate(_LR):
74
+ logging.info(f"[TRAIN {n}/{len(_LR)}] lr: {lr_tmp}")
75
+ output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}"
76
+ if os.path.exists(f"{output_dir_tmp}/eval_results.json"):
77
+ continue
78
+ model = load_model(
79
+ model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
80
+ )
81
+ trainer = Seq2SeqTrainer(
82
+ model=model,
83
+ args=Seq2SeqTrainingArguments(
84
+ num_train_epochs=_EPOCH,
85
+ learning_rate=lr_tmp,
86
+ output_dir=output_dir_tmp,
87
+ save_strategy="epoch",
88
+ evaluation_strategy="no",
89
+ seed=random_seed,
90
+ per_device_train_batch_size=_BATCH,
91
+ ),
92
+ data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model),
93
+ train_dataset=tokenized_dataset,
94
+ )
95
+ # train
96
+ result = trainer.train()
97
+ trainer.log_metrics("train", result.metrics)
98
+ trainer.save_metrics("train", result.metrics)
99
+ # clean up memory
100
+ trainer.save_model()
101
+ trainer.save_state()
102
+ del trainer
103
+ del model
104
+ gc.collect()
105
+ torch.cuda.empty_cache()
106
+ #
107
+ #
108
+ # def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> float:
109
+ # scores = []
110
+ # for g, r in zip(references, predictions):
111
+ # tp = len(set(g).intersection(set(r)))
112
+ # fp = len([_g for _g in g if _g not in r])
113
+ # fn = len([_r for _r in r if _r not in g])
114
+ # if tp == 0:
115
+ # f1 = 0
116
+ # else:
117
+ # f1 = 2 * tp / (2 * tp + fp + fn)
118
+ # scores.append(f1)
119
+ # return mean(scores)
120
+ #
121
+ #
122
+ #
123
+ #
124
+ # def evaluate(
125
+ # model_path: str,
126
+ # batch_eval: int,
127
+ # dataset_column_text: str,
128
+ # dataset_instance,
129
+ # dataset_split_test: str,
130
+ # dataset_column_label: str,
131
+ # ):
132
+ # prediction_file = f'{model_path}/prediction.{dataset_name}.{}.txt'
133
+ # input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
134
+ # if not os.path.exists():
135
+ # pipe = pipeline(
136
+ # 'text2text-generation',
137
+ # model=model_path,
138
+ # device='cuda:0' if torch.cuda.is_available() else 'cpu',
139
+ # )
140
+ # output = pipe(input_data, batch_size=batch_eval)
141
+ # output = [i['generated_text'] for i in output]
142
+ # with open(f'{model_path}/prediction_test.txt', 'w') as f:
143
+ # f.write('\n'.join(output))
144
+ # with open(f'{model_path}/prediction_test.txt') as f:
145
+ # output = [set(i.split(',')) for i in f.read().split('\n')]
146
+ # dataset_tmp = dataset_instance[dataset_split_test]
147
+ # label_list = dataset_tmp[dataset_column_label]
148
+ # _references = [
149
+ # set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp
150
+ # ]
151
+ # eval_metric = get_f1_score(_references, output)
152
+ # eval_metric[f'f1/{dataset}/{dataset_name}'] = eval_metric.pop('f1')
153
+ # logging.info(json.dumps(eval_metric, indent=4))
154
+ # with open(f'{model_path}/evaluation_metrics.json', 'w') as f:
155
+ # json.dump(eval_metric, f)
156
+ #
157
+ #
158
+ # def train(
159
+ # model_name: str,
160
+ # model_low_cpu_mem_usage: bool,
161
+ # dataset: str,
162
+ # dataset_name: str,
163
+ # dataset_column_label: str,
164
+ # dataset_column_text: str,
165
+ # dataset_split_train: str,
166
+ # dataset_split_validation: str,
167
+ # dataset_split_test: str,
168
+ # lr: List,
169
+ # epoch: List,
170
+ # batch: List,
171
+ # down_sample_train: int,
172
+ # down_sample_validation: int,
173
+ # random_seed: int,
174
+ # use_auth_token: bool,
175
+ # output_dir: str,
176
+ # model_alias: str,
177
+ # model_organization: str,
178
+ # skip_train: bool = False,
179
+ # skip_test: bool = False,
180
+ # skip_upload: bool = False,
181
+ # batch_eval: int = None):
182
+ # """Fine-tune seq2seq model."""
183
+ # logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
184
+ # if not output_dir:
185
+ # output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}'
186
+ # # dataset process
187
+ # tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token)
188
+ # dataset_split = {
189
+ # 'train': dataset_split_train,
190
+ # 'validation': dataset_split_validation
191
+ # }
192
+ # dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token)
193
+ # tokenized_dataset = {}
194
+ # for s, s_dataset in zip(['train', 'validation'], [dataset_split_train, dataset_split_validation):
195
+ # tokenized_dataset[s] = []
196
+ # for i in dataset_instance[s_dataset]:
197
+ # model_inputs = tokenizer(i[dataset_column_text], truncation=True)
198
+ # model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids']
199
+ # tokenized_dataset[s].append(model_inputs)
200
+ #
201
+ # if not skip_train:
202
+ # lr = [1e-6, 1e-5, 1e-4] if lr is None else lr
203
+ # batch = [32] if not batch else batch
204
+ # epoch = [3, 5] if not epoch else epoch
205
+ # batch_eval = min(batch) if not batch_eval else batch_eval
206
+ # for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
207
+ # logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
208
+ # output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}_batch_{batch_tmp}_epoch_{epoch_tmp}"
209
+ # if os.path.exists(f"{output_dir_tmp}/eval_results.json"):
210
+ # continue
211
+ # model = load_model(
212
+ # model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
213
+ # )
214
+ # trainer = Seq2SeqTrainer(
215
+ # model=model,
216
+ # args=Seq2SeqTrainingArguments(
217
+ # num_train_epochs=epoch_tmp,
218
+ # learning_rate=lr_tmp,
219
+ # output_dir=output_dir_tmp,
220
+ # evaluation_strategy="no",
221
+ # seed=random_seed,
222
+ # per_device_train_batch_size=batch_tmp,
223
+ # ),
224
+ # data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model),
225
+ # train_dataset=tokenized_dataset['train_ds'],
226
+ # )
227
+ # # train
228
+ # result = trainer.train()
229
+ # trainer.log_metrics("train", result.metrics)
230
+ # trainer.save_metrics("train", result.metrics)
231
+ # # clean up memory
232
+ # trainer.save_model()
233
+ # trainer.save_state()
234
+ # del trainer
235
+ # del model
236
+ # gc.collect()
237
+ # torch.cuda.empty_cache()
238
+ #
239
+ # model_score = []
240
+ # for eval_file in glob(f"{output_dir}/model_*/eval_results.json"):
241
+ # with open(eval_file) as f:
242
+ # results = json.load(f)
243
+ # model_score.append([os.path.dirname(eval_file), results['eval_loss'], results['eval_f1']])
244
+ # logging.info("Search Result")
245
+ # for i in model_score:
246
+ # logging.info(i)
247
+ # max_metric = max(model_score, key=lambda x: x[2])
248
+ # if len([i for i in model_score if i[2] == max_metric]) > 1:
249
+ # best_model = sorted(model_score, key=lambda x: x[1])[0][0]
250
+ # else:
251
+ # best_model = sorted(model_score, key=lambda x: x[2])[-1][0]
252
+ # copy_tree(best_model, f'{output_dir}/best_model')
253
+ # tokenizer.save_pretrained(f'{output_dir}/best_model')
254
+ # else:
255
+ # logging.info('skip hyperparameter search & model training (already done)')
256
+ #
257
+ # # get metric on the test set
258
+ # if not skip_test:
259
+ # logging.info('run evaluation on test set')
260
+ # if not skip_upload:
261
+ # assert model_alias is not None and model_organization is not None,\
262
+ # 'model_organization must be specified when model_alias is specified'
263
+ # logging.info('uploading to huggingface')
264
+ # args = {'use_auth_token': use_auth_token, 'organization': model_organization}
265
+ # model = load_model(model_name=f'{output_dir}/best_model')
266
+ # model.push_to_hub(model_alias, **args)
267
+ # tokenizer.push_to_hub(model_alias, **args)
268
+ # repo = Repository(model_alias, f'{model_organization}/{model_alias}')
269
+ # if os.path.exists(f'{output_dir}/best_model/prediction_test.txt'):
270
+ # copyfile(f'{output_dir}/best_model/prediction_test.txt', f'{model_alias}/prediction_test.txt')
271
+ # if os.path.exists(f'{output_dir}/best_model/evaluation_metrics.json'):
272
+ # copyfile(f'{output_dir}/best_model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json')
273
+ # sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]]
274
+ # sample = [i for i in sample if ''' not in i and ''' not in i][:3]
275
+ # widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)])
276
+ # with open(f'{model_alias}/README.md', 'w') as f:
277
+ # f.write(f"""
278
+ # ---
279
+ # widget:
280
+ # {widget}
281
+ # ---
282
+ #
283
+ # # {model_organization}/{model_alias}
284
+ #
285
+ # This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}).
286
+ #
287
+ # ### Usage
288
+ #
289
+ # ```python
290
+ # from transformers import pipeline
291
+ #
292
+ # pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}')
293
+ # output = pipe('{sample[0]}')
294
+ # ```
295
+ # """)
296
+ # repo.push_to_hub()
297
+ #
298
 
299
  if __name__ == '__main__':
300
  # arguments
 
333
  dataset_name=opt.dataset_name,
334
  dataset_column_label=opt.dataset_column_label,
335
  dataset_column_text=opt.dataset_column_text,
 
 
 
 
 
 
 
 
 
336
  random_seed=opt.random_seed,
337
  use_auth_token=opt.use_auth_token,
 
 
 
 
 
 
338
  )
training_scripts/script.sh CHANGED
@@ -9,7 +9,6 @@ python finetune_t5.py -m cardiffnlp/mt5-small-tweet-topic-multi-en-2022 --datase
9
 
10
  # mix
11
  python finetune_t5.py --dataset-name mix --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-mix --model-organization cardiffnlp --use-auth-token
12
- python finetune_t5.py --dataset-name mix_2022 --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-mix-2022 --model-organization cardiffnlp --use-auth-token
13
 
14
  # single
15
  python finetune_t5.py --dataset-name es --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-es --model-organization cardiffnlp --use-auth-token --skip-train --skip-test
@@ -17,4 +16,9 @@ python finetune_t5.py --dataset-name en --low-cpu-mem-usage --model-alias mt5-sm
17
  python finetune_t5.py --dataset-name ja --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-ja --model-organization cardiffnlp --use-auth-token
18
  python finetune_t5.py --dataset-name gr --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-gr --model-organization cardiffnlp --use-auth-token
19
 
 
 
 
 
 
20
 
 
9
 
10
  # mix
11
  python finetune_t5.py --dataset-name mix --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-mix --model-organization cardiffnlp --use-auth-token
 
12
 
13
  # single
14
  python finetune_t5.py --dataset-name es --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-es --model-organization cardiffnlp --use-auth-token --skip-train --skip-test
 
16
  python finetune_t5.py --dataset-name ja --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-ja --model-organization cardiffnlp --use-auth-token
17
  python finetune_t5.py --dataset-name gr --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-gr --model-organization cardiffnlp --use-auth-token
18
 
19
+ # continuous
20
+ python finetune_t5.py -m cardiffnlp/mt5-small-tweet-topic-multi-en-2022 --dataset-name es --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-en-2022-es --model-organization cardiffnlp --use-auth-token
21
+ python finetune_t5.py -m cardiffnlp/mt5-small-tweet-topic-multi-en-2022 --dataset-name en --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-en-2022-en --model-organization cardiffnlp --use-auth-token
22
+ python finetune_t5.py -m cardiffnlp/mt5-small-tweet-topic-multi-en-2022 --dataset-name ja --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-en-2022-ja --model-organization cardiffnlp --use-auth-token
23
+ python finetune_t5.py -m cardiffnlp/mt5-small-tweet-topic-multi-en-2022 --dataset-name gr --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-multi-en-2022-gr --model-organization cardiffnlp --use-auth-token
24