asahi417 commited on
Commit
541d3e6
·
1 Parent(s): 88b612d
training_scripts/finetune_t5.py CHANGED
@@ -181,12 +181,19 @@ def train(
181
  torch.cuda.empty_cache()
182
  # cuda.get_current_device().reset()
183
 
184
- model_score = {}
185
  for eval_file in glob(f"{output_dir}/model_*/eval_results.json"):
186
  with open(eval_file) as f:
187
- model_score[os.path.dirname(eval_file)] = json.load(f)['eval_f1']
188
- logging.info(f"- Search Result\n{json.dumps(model_score, indent=4)}")
189
- best_model = max(model_score, key=model_score.get)
 
 
 
 
 
 
 
190
  copy_tree(best_model, f'{output_dir}/best_model')
191
  else:
192
  logging.info('skip hyperparameter search & model training (already done)')
 
181
  torch.cuda.empty_cache()
182
  # cuda.get_current_device().reset()
183
 
184
+ model_score = []
185
  for eval_file in glob(f"{output_dir}/model_*/eval_results.json"):
186
  with open(eval_file) as f:
187
+ results = json.load(f)
188
+ model_score.append([os.path.dirname(eval_file), results['eval_loss'], results['eval_f1']])
189
+ logging.info("Search Result")
190
+ for i in model_score:
191
+ logging.info(i)
192
+ max_metric = max(model_score, key=lambda x: x[2])
193
+ if len([i for i in model_score if i[2] == max_metric]) > 1:
194
+ best_model = sorted(model_score, key=lambda x: x[1])[0][0]
195
+ else:
196
+ best_model = sorted(model_score, key=lambda x: x[2])[-1][0]
197
  copy_tree(best_model, f'{output_dir}/best_model')
198
  else:
199
  logging.info('skip hyperparameter search & model training (already done)')
training_scripts/script.sh CHANGED
@@ -1,4 +1,4 @@
1
- python finetune_t5.py --dataset-name ja --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp
2
  python finetune_t5.py --dataset-name gr --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-gr --model-organization cardiffnlp
3
  python finetune_t5.py --dataset-name es --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-es --model-organization cardiffnlp
4
  python finetune_t5.py --dataset-name en --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-en --model-organization cardiffnlp
 
1
+ python finetune_t5.py --dataset-name ja --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --skip-upload
2
  python finetune_t5.py --dataset-name gr --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-gr --model-organization cardiffnlp
3
  python finetune_t5.py --dataset-name es --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-es --model-organization cardiffnlp
4
  python finetune_t5.py --dataset-name en --low-cpu-mem-usage --model-alias mt5-small-tweet-topic-en --model-organization cardiffnlp