init
Browse files
training_scripts/finetune_t5.py
CHANGED
@@ -85,7 +85,7 @@ def train(
|
|
85 |
skip_train: bool = False,
|
86 |
skip_test: bool = False,
|
87 |
skip_upload: bool = False,
|
88 |
-
|
89 |
"""Fine-tune seq2seq model."""
|
90 |
logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
|
91 |
if not output_dir:
|
@@ -139,7 +139,7 @@ def train(
|
|
139 |
lr = [1e-6, 1e-5, 1e-4] if lr is None else lr
|
140 |
batch = [32] if not batch else batch
|
141 |
epoch = [3, 5] if not epoch else epoch
|
142 |
-
|
143 |
for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
|
144 |
logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
|
145 |
output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}_batch_{batch_tmp}_epoch_{epoch_tmp}"
|
@@ -155,7 +155,7 @@ def train(
|
|
155 |
learning_rate=lr_tmp,
|
156 |
output_dir=output_dir_tmp,
|
157 |
evaluation_strategy="no",
|
158 |
-
per_device_eval_batch_size=
|
159 |
seed=random_seed,
|
160 |
per_device_train_batch_size=batch_tmp,
|
161 |
),
|
@@ -209,7 +209,7 @@ def train(
|
|
209 |
device='cuda:0' if torch.cuda.is_available() else 'cpu',
|
210 |
)
|
211 |
input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
|
212 |
-
output = pipe(input_data, batch_size=
|
213 |
output = [i['generated_text'] for i in output]
|
214 |
with open(f'{output_dir}/best_model/prediction_test.txt', 'w') as f:
|
215 |
f.write('\n'.join(output))
|
@@ -281,6 +281,7 @@ if __name__ == '__main__':
|
|
281 |
parser.add_argument('--lr', nargs='+', default=None, type=float)
|
282 |
parser.add_argument('--epoch', nargs='+', default=None, type=int)
|
283 |
parser.add_argument('--batch', nargs='+', default=None, type=int)
|
|
|
284 |
parser.add_argument('--down-sample-train', default=None, type=int)
|
285 |
parser.add_argument('--down-sample-validation', default=2000, type=int)
|
286 |
parser.add_argument('--random-seed', default=42, type=int)
|
@@ -307,6 +308,7 @@ if __name__ == '__main__':
|
|
307 |
lr=opt.lr,
|
308 |
epoch=opt.epoch,
|
309 |
batch=opt.batch,
|
|
|
310 |
down_sample_train=opt.down_sample_train,
|
311 |
down_sample_validation=opt.down_sample_validation,
|
312 |
random_seed=opt.random_seed,
|
|
|
85 |
skip_train: bool = False,
|
86 |
skip_test: bool = False,
|
87 |
skip_upload: bool = False,
|
88 |
+
batch_eval: int = None):
|
89 |
"""Fine-tune seq2seq model."""
|
90 |
logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})')
|
91 |
if not output_dir:
|
|
|
139 |
lr = [1e-6, 1e-5, 1e-4] if lr is None else lr
|
140 |
batch = [32] if not batch else batch
|
141 |
epoch = [3, 5] if not epoch else epoch
|
142 |
+
batch_eval = min(batch) if not batch_eval else batch_eval
|
143 |
for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
|
144 |
logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}")
|
145 |
output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}_batch_{batch_tmp}_epoch_{epoch_tmp}"
|
|
|
155 |
learning_rate=lr_tmp,
|
156 |
output_dir=output_dir_tmp,
|
157 |
evaluation_strategy="no",
|
158 |
+
per_device_eval_batch_size=batch_eval,
|
159 |
seed=random_seed,
|
160 |
per_device_train_batch_size=batch_tmp,
|
161 |
),
|
|
|
209 |
device='cuda:0' if torch.cuda.is_available() else 'cpu',
|
210 |
)
|
211 |
input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]]
|
212 |
+
output = pipe(input_data, batch_size=batch_eval)
|
213 |
output = [i['generated_text'] for i in output]
|
214 |
with open(f'{output_dir}/best_model/prediction_test.txt', 'w') as f:
|
215 |
f.write('\n'.join(output))
|
|
|
281 |
parser.add_argument('--lr', nargs='+', default=None, type=float)
|
282 |
parser.add_argument('--epoch', nargs='+', default=None, type=int)
|
283 |
parser.add_argument('--batch', nargs='+', default=None, type=int)
|
284 |
+
parser.add_argument('--batch-eval', type=int, default=None)
|
285 |
parser.add_argument('--down-sample-train', default=None, type=int)
|
286 |
parser.add_argument('--down-sample-validation', default=2000, type=int)
|
287 |
parser.add_argument('--random-seed', default=42, type=int)
|
|
|
308 |
lr=opt.lr,
|
309 |
epoch=opt.epoch,
|
310 |
batch=opt.batch,
|
311 |
+
batch_eval=opt.batch_eval,
|
312 |
down_sample_train=opt.down_sample_train,
|
313 |
down_sample_validation=opt.down_sample_validation,
|
314 |
random_seed=opt.random_seed,
|