|
""" Fine-tune T5 on topic classification (multi-label multi-class classification) |
|
``` |
|
python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --low-cpu-mem-usage |
|
``` |
|
""" |
|
import json |
|
import logging |
|
import os |
|
import argparse |
|
import gc |
|
from glob import glob |
|
from typing import List, Set, Dict |
|
from shutil import copyfile |
|
from statistics import mean |
|
from itertools import product |
|
from distutils.dir_util import copy_tree |
|
|
|
import torch |
|
import transformers |
|
from datasets import load_dataset |
|
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline |
|
from huggingface_hub import Repository |
|
|
|
|
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false' |
|
os.environ['WANDB_DISABLED'] = 'true' |
|
|
|
|
|
def load_model( |
|
model_name: str, |
|
use_auth_token: bool = False, |
|
low_cpu_mem_usage: bool = False) -> transformers.PreTrainedModel: |
|
"""Load language model from huggingface model hub.""" |
|
|
|
config = transformers.AutoConfig.from_pretrained(model_name, use_auth_token=use_auth_token) |
|
if config.model_type == 't5': |
|
model_class = transformers.T5ForConditionalGeneration.from_pretrained |
|
elif config.model_type == 'mt5': |
|
model_class = transformers.MT5ForConditionalGeneration.from_pretrained |
|
elif config.model_type == 'bart': |
|
model_class = transformers.BartForConditionalGeneration.from_pretrained |
|
elif config.model_type == 'mbart': |
|
model_class = transformers.MBartForConditionalGeneration.from_pretrained |
|
else: |
|
raise ValueError(f'unsupported model type: {config.model_type}') |
|
param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage} |
|
model = model_class(model_name, **param) |
|
return model |
|
|
|
|
|
def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> Dict[str, float]: |
|
scores = [] |
|
for g, r in zip(references, predictions): |
|
tp = len(set(g).intersection(set(r))) |
|
fp = len([_g for _g in g if _g not in r]) |
|
fn = len([_r for _r in r if _r not in g]) |
|
if tp == 0: |
|
f1 = 0 |
|
else: |
|
f1 = 2 * tp / (2 * tp + fp + fn) |
|
scores.append(f1) |
|
return {'f1': mean(scores)} |
|
|
|
|
|
def train( |
|
model_name: str, |
|
model_low_cpu_mem_usage: bool, |
|
dataset: str, |
|
dataset_name: str, |
|
dataset_column_label: str, |
|
dataset_column_text: str, |
|
dataset_split_train: str, |
|
dataset_split_validation: str, |
|
dataset_split_test: str, |
|
lr: List, |
|
epoch: List, |
|
batch: List, |
|
down_sample_train: int, |
|
down_sample_validation: int, |
|
random_seed: int, |
|
use_auth_token: bool, |
|
output_dir: str, |
|
model_alias: str, |
|
model_organization: str, |
|
skip_train: bool = False, |
|
skip_test: bool = False, |
|
skip_upload: bool = False, |
|
eval_batch_size: int = None): |
|
"""Fine-tune seq2seq model.""" |
|
logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})') |
|
if not output_dir: |
|
output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token) |
|
dataset_split = { |
|
'train': [dataset_split_train, down_sample_train], |
|
'validation': [dataset_split_validation, down_sample_validation] |
|
} |
|
dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token) |
|
tokenized_dataset = {} |
|
for s, (s_dataset, down_sample) in dataset_split.items(): |
|
tokenized_dataset[s] = [] |
|
dataset_tmp = dataset_instance[s_dataset] |
|
dataset_tmp.shuffle(random_seed) |
|
for i in dataset_tmp: |
|
model_inputs = tokenizer(i[dataset_column_text], truncation=True) |
|
model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids'] |
|
tokenized_dataset[s].append(model_inputs) |
|
|
|
if down_sample is not None and len(dataset_tmp) > down_sample: |
|
tokenized_dataset[f'{s}_ds'] = [] |
|
dataset_tmp = dataset_tmp.select(list(range(down_sample))) |
|
for i in dataset_tmp: |
|
model_inputs = tokenizer(i[dataset_column_text], truncation=True) |
|
model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids'] |
|
tokenized_dataset[f'{s}_ds'].append(model_inputs) |
|
else: |
|
tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s] |
|
|
|
def compute_metric(eval_pred) -> Dict[str, float]: |
|
|
|
def decode_tokens(token_ids) -> List[Set[str]]: |
|
return [ |
|
set(tokenizer.decode(list(filter(lambda x: x != -100, r)), skip_special_tokens=True).split(',')) for r |
|
in token_ids |
|
] |
|
|
|
predictions, reference_token_ids = eval_pred |
|
|
|
references_decode = decode_tokens(reference_token_ids) |
|
|
|
logit, loss = predictions |
|
generation_token_id = logit.argmax(-1) |
|
generation_token_id[logit.min(-1) == -100] = -100 |
|
generation_decode = decode_tokens(generation_token_id) |
|
return get_f1_score(references_decode, generation_decode) |
|
|
|
if not skip_train: |
|
lr = [1e-6, 1e-5, 1e-4] if lr is None else lr |
|
batch = [32] if not batch else batch |
|
epoch = [3, 5] if not epoch else epoch |
|
eval_batch_size = min(batch) if not eval_batch_size else eval_batch_size |
|
for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)): |
|
logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}") |
|
output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}_batch_{batch_tmp}_epoch_{epoch_tmp}" |
|
if os.path.exists(f"{output_dir_tmp}/eval_results.json"): |
|
continue |
|
model = load_model( |
|
model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage |
|
) |
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=Seq2SeqTrainingArguments( |
|
num_train_epochs=epoch_tmp, |
|
learning_rate=lr_tmp, |
|
output_dir=output_dir_tmp, |
|
evaluation_strategy="no", |
|
per_device_eval_batch_size=eval_batch_size, |
|
seed=random_seed, |
|
per_device_train_batch_size=batch_tmp, |
|
), |
|
data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model), |
|
train_dataset=tokenized_dataset['train_ds'], |
|
eval_dataset=tokenized_dataset['validation_ds'], |
|
compute_metrics=compute_metric, |
|
) |
|
|
|
result = trainer.train() |
|
trainer.log_metrics("train", result.metrics) |
|
trainer.save_metrics("train", result.metrics) |
|
|
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
trainer.save_model() |
|
trainer.save_state() |
|
del trainer |
|
del model |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
model_score = [] |
|
for eval_file in glob(f"{output_dir}/model_*/eval_results.json"): |
|
with open(eval_file) as f: |
|
results = json.load(f) |
|
model_score.append([os.path.dirname(eval_file), results['eval_loss'], results['eval_f1']]) |
|
logging.info("Search Result") |
|
for i in model_score: |
|
logging.info(i) |
|
max_metric = max(model_score, key=lambda x: x[2]) |
|
if len([i for i in model_score if i[2] == max_metric]) > 1: |
|
best_model = sorted(model_score, key=lambda x: x[1])[0][0] |
|
else: |
|
best_model = sorted(model_score, key=lambda x: x[2])[-1][0] |
|
copy_tree(best_model, f'{output_dir}/best_model') |
|
tokenizer.save_pretrained(f'{output_dir}/best_model') |
|
else: |
|
logging.info('skip hyperparameter search & model training (already done)') |
|
|
|
|
|
if not skip_test: |
|
logging.info('run evaluation on test set') |
|
if not os.path.exists(f'{output_dir}/best_model/prediction_test.txt'): |
|
pipe = pipeline( |
|
'text2text-generation', |
|
model=f'{output_dir}/best_model', |
|
device='cuda:0' if torch.cuda.is_available() else 'cpu', |
|
) |
|
input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]] |
|
output = pipe(input_data, batch_size=eval_batch_size) |
|
output = [i['generated_text'] for i in output] |
|
with open(f'{output_dir}/best_model/prediction_test.txt', 'w') as f: |
|
f.write('\n'.join(output)) |
|
with open(f'{output_dir}/best_model/prediction_test.txt') as f: |
|
output = [set(i.split(',')) for i in f.read().split('\n')] |
|
dataset_tmp = dataset_instance[dataset_split_test] |
|
label_list = dataset_tmp[dataset_column_label] |
|
_references = [ |
|
set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp |
|
] |
|
eval_metric = get_f1_score(_references, output) |
|
logging.info(json.dumps(eval_metric, indent=4)) |
|
with open(f'{output_dir}/best_model/evaluation_metrics.json', 'w') as f: |
|
json.dump(eval_metric, f) |
|
|
|
if not skip_upload: |
|
assert model_alias is not None and model_organization is not None,\ |
|
'model_organization must be specified when model_alias is specified' |
|
logging.info('uploading to huggingface') |
|
args = {'use_auth_token': use_auth_token, 'organization': model_organization} |
|
model = load_model(model_name=f'{output_dir}/best_model') |
|
model.push_to_hub(model_alias, **args) |
|
tokenizer.push_to_hub(model_alias, **args) |
|
repo = Repository(model_alias, f'{model_organization}/{model_alias}') |
|
copyfile(f'{output_dir}/best_model/hyperparameters.json', f'{model_alias}/hyperparameters.json') |
|
if os.path.exists(f'{output_dir}/best_model/prediction_test.txt'): |
|
copyfile(f'{output_dir}/best_model/prediction_test.txt', f'{model_alias}/prediction_test.txt') |
|
if os.path.exists(f'{output_dir}/best_model/evaluation_metrics.json'): |
|
copyfile(f'{output_dir}/best_model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json') |
|
sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]] |
|
sample = [i for i in sample if ''' not in i and ''' not in i][:3] |
|
widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)]) |
|
with open(f'{model_alias}/README.md', 'w') as f: |
|
f.write(f""" |
|
--- |
|
widget: |
|
{widget} |
|
--- |
|
|
|
# {model_organization}/{model_alias} |
|
|
|
This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}). |
|
|
|
### Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}') |
|
output = pipe('{sample[0]}') |
|
``` |
|
""") |
|
repo.push_to_hub() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') |
|
parser = argparse.ArgumentParser(description='Seq2Seq LM Fine-tuning on topic classification.') |
|
parser.add_argument('-m', '--model-name', default='google/mt5-small', type=str) |
|
parser.add_argument('--low-cpu-mem-usage', action='store_true') |
|
parser.add_argument('-d', '--dataset', default='cardiffnlp/tweet_topic_multilingual', type=str) |
|
parser.add_argument('--dataset-name', default='ja', type=str) |
|
parser.add_argument('--dataset-column-label', default='label_name_flatten', type=str) |
|
parser.add_argument('--dataset-column-text', default='text', type=str) |
|
parser.add_argument('--dataset-split-train', default='train', type=str) |
|
parser.add_argument('--dataset-split-validation', default='validation', type=str) |
|
parser.add_argument('--dataset-split-test', default='test', type=str) |
|
parser.add_argument('--lr', nargs='+', default=None, type=float) |
|
parser.add_argument('--epoch', nargs='+', default=None, type=int) |
|
parser.add_argument('--batch', nargs='+', default=None, type=int) |
|
parser.add_argument('--down-sample-train', default=None, type=int) |
|
parser.add_argument('--down-sample-validation', default=2000, type=int) |
|
parser.add_argument('--random-seed', default=42, type=int) |
|
parser.add_argument('--use-auth-token', action='store_true') |
|
parser.add_argument('--eval-steps', default=100, type=int) |
|
parser.add_argument('--output-dir', default=None, type=str) |
|
parser.add_argument('--model-alias', default=None, type=str) |
|
parser.add_argument('--model-organization', default=None, type=str) |
|
parser.add_argument('--skip-train', action='store_true') |
|
parser.add_argument('--skip-test', action='store_true') |
|
parser.add_argument('--skip-upload', action='store_true') |
|
opt = parser.parse_args() |
|
|
|
train( |
|
model_name=opt.model_name, |
|
model_low_cpu_mem_usage=opt.low_cpu_mem_usage, |
|
dataset=opt.dataset, |
|
dataset_name=opt.dataset_name, |
|
dataset_column_label=opt.dataset_column_label, |
|
dataset_column_text=opt.dataset_column_text, |
|
dataset_split_train=opt.dataset_split_train, |
|
dataset_split_validation=opt.dataset_split_validation, |
|
dataset_split_test=opt.dataset_split_test, |
|
lr=opt.lr, |
|
epoch=opt.epoch, |
|
batch=opt.batch, |
|
down_sample_train=opt.down_sample_train, |
|
down_sample_validation=opt.down_sample_validation, |
|
random_seed=opt.random_seed, |
|
use_auth_token=opt.use_auth_token, |
|
output_dir=opt.output_dir, |
|
model_alias=opt.model_alias, |
|
model_organization=opt.model_organization, |
|
skip_train=opt.skip_train, |
|
skip_test=opt.skip_test, |
|
skip_upload=opt.skip_upload |
|
) |