Update lm_finetuning.py
Browse files- lm_finetuning.py +8 -6
lm_finetuning.py
CHANGED
@@ -23,6 +23,7 @@ import argparse
|
|
23 |
import json
|
24 |
import logging
|
25 |
import os
|
|
|
26 |
import shutil
|
27 |
import urllib.request
|
28 |
import multiprocessing
|
@@ -49,6 +50,10 @@ def internet_connection(host='http://google.com'):
|
|
49 |
return False
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
52 |
def get_metrics():
|
53 |
metric_accuracy = load_metric("accuracy", "multilabel")
|
54 |
metric_f1 = load_metric("f1", "multilabel")
|
@@ -58,17 +63,14 @@ def get_metrics():
|
|
58 |
|
59 |
def compute_metric_search(eval_pred):
|
60 |
logits, labels = eval_pred
|
61 |
-
|
62 |
-
print(labels)
|
63 |
-
print(logits)
|
64 |
-
predictions = np.argmax(logits, axis=-1)
|
65 |
-
print(predictions)
|
66 |
print(labels.shape, logits.shape, predictions.shape)
|
67 |
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
|
68 |
|
69 |
def compute_metric_all(eval_pred):
|
70 |
logits, labels = eval_pred
|
71 |
-
predictions = np.
|
|
|
72 |
return {
|
73 |
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
|
74 |
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
|
|
|
23 |
import json
|
24 |
import logging
|
25 |
import os
|
26 |
+
import math
|
27 |
import shutil
|
28 |
import urllib.request
|
29 |
import multiprocessing
|
|
|
50 |
return False
|
51 |
|
52 |
|
53 |
+
def sigmoid(x):
|
54 |
+
return 1 / (1 + math.exp(-x))
|
55 |
+
|
56 |
+
|
57 |
def get_metrics():
|
58 |
metric_accuracy = load_metric("accuracy", "multilabel")
|
59 |
metric_f1 = load_metric("f1", "multilabel")
|
|
|
63 |
|
64 |
def compute_metric_search(eval_pred):
|
65 |
logits, labels = eval_pred
|
66 |
+
predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits])
|
|
|
|
|
|
|
|
|
67 |
print(labels.shape, logits.shape, predictions.shape)
|
68 |
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
|
69 |
|
70 |
def compute_metric_all(eval_pred):
|
71 |
logits, labels = eval_pred
|
72 |
+
predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits])
|
73 |
+
print(labels.shape, logits.shape, predictions.shape)
|
74 |
return {
|
75 |
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
|
76 |
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
|