Update get_model_list.py
Browse files- get_model_list.py +2 -1
get_model_list.py
CHANGED
@@ -37,10 +37,11 @@ os.makedirs("metric_files", exists_ok=True)
|
|
37 |
|
38 |
metrics = []
|
39 |
for i in models:
|
|
|
40 |
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json"
|
41 |
model_url = f"https://huggingface.co/{i}"
|
42 |
metric = download(f"metric_files/{os.path.basename(i)}.json", url)
|
43 |
-
metrics.append({"model": f"[{i}]({model_url})" "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]})
|
44 |
|
45 |
df = pd.DataFrame(metrics)
|
46 |
print(df.to_markdown(index=False))
|
|
|
37 |
|
38 |
metrics = []
|
39 |
for i in models:
|
40 |
+
model_type = "all (2020 + 2021)" if i.endswith("all") else "2020 only"
|
41 |
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json"
|
42 |
model_url = f"https://huggingface.co/{i}"
|
43 |
metric = download(f"metric_files/{os.path.basename(i)}.json", url)
|
44 |
+
metrics.append({"model": f"[{i}]({model_url})", "training data": model_type, "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]})
|
45 |
|
46 |
df = pd.DataFrame(metrics)
|
47 |
print(df.to_markdown(index=False))
|