|
import os |
|
from typing import Dict |
|
|
|
|
|
def get_readme(model_name: str, |
|
metric: Dict, |
|
metric_span: Dict, |
|
config: Dict): |
|
language_model = config['model'] |
|
dataset = None |
|
dataset_alias = "custom" |
|
if config["dataset"] is not None: |
|
dataset = sorted([i for i in config["dataset"]]) |
|
dataset_alias = ','.join(dataset) |
|
config_text = "\n".join([f" - {k}: {v}" for k, v in config.items()]) |
|
ci_micro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()]) |
|
ci_macro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()]) |
|
per_entity_metric = '\n'.join([f'- {k}: {v["f1"]}' for k, v in metric['per_entity_metric'].items()]) |
|
if dataset is None: |
|
dataset_link = 'custom' |
|
else: |
|
dataset = [dataset] if type(dataset) is str else dataset |
|
dataset_link = ','.join([f"[{d}](https://huggingface.co/datasets/{d})" for d in dataset]) |
|
return f"""--- |
|
datasets: |
|
- {dataset_alias} |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: {model_name} |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: {dataset_alias} |
|
type: {dataset_alias} |
|
args: {dataset_alias} |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: {metric['micro/f1']} |
|
- name: Precision |
|
type: precision |
|
value: {metric['micro/precision']} |
|
- name: Recall |
|
type: recall |
|
value: {metric['micro/recall']} |
|
- name: F1 (macro) |
|
type: f1_macro |
|
value: {metric['macro/f1']} |
|
- name: Precision (macro) |
|
type: precision_macro |
|
value: {metric['macro/precision']} |
|
- name: Recall (macro) |
|
type: recall_macro |
|
value: {metric['macro/recall']} |
|
- name: F1 (entity span) |
|
type: f1_entity_span |
|
value: {metric_span['micro/f1']} |
|
- name: Precision (entity span) |
|
type: precision_entity_span |
|
value: {metric_span['micro/precision']} |
|
- name: Recall (entity span) |
|
type: recall_entity_span |
|
value: {metric_span['micro/recall']} |
|
|
|
pipeline_tag: token-classification |
|
widget: |
|
- text: "Jacob Collier is a Grammy awarded artist from England." |
|
example_title: "NER Example 1" |
|
--- |
|
# {model_name} |
|
|
|
This model is a fine-tuned version of [{language_model}](https://huggingface.co/{language_model}) on the |
|
{dataset_link} dataset. |
|
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository |
|
for more detail). It achieves the following results on the test set: |
|
- F1 (micro): {metric['micro/f1']} |
|
- Precision (micro): {metric['micro/precision']} |
|
- Recall (micro): {metric['micro/recall']} |
|
- F1 (macro): {metric['macro/f1']} |
|
- Precision (macro): {metric['macro/precision']} |
|
- Recall (macro): {metric['macro/recall']} |
|
|
|
The per-entity breakdown of the F1 score on the test set are below: |
|
{per_entity_metric} |
|
|
|
For F1 scores, the confidence interval is obtained by bootstrap as below: |
|
- F1 (micro): |
|
{ci_micro} |
|
- F1 (macro): |
|
{ci_macro} |
|
|
|
Full evaluation can be found at [metric file of NER](https://huggingface.co/{model_name}/raw/main/eval/metric.json) |
|
and [metric file of entity span](https://huggingface.co/{model_name}/raw/main/eval/metric_span.json). |
|
|
|
### Usage |
|
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip |
|
```shell |
|
pip install tner |
|
``` |
|
and activate model as below. |
|
```python |
|
from tner import TransformersNER |
|
model = TransformersNER("{model_name}") |
|
model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) |
|
``` |
|
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
{config_text} |
|
|
|
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/{model_name}/raw/main/trainer_config.json). |
|
|
|
### Reference |
|
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). |
|
|
|
``` |
|
{bib} |
|
``` |
|
""" |
|
|