|
""" TweetTopic Dataset """ |
|
import json |
|
from itertools import chain |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
_DESCRIPTION = """[TweetTopic](TBA)""" |
|
|
|
_VERSION = "1.0.2" |
|
_CITATION = """ |
|
TBA |
|
""" |
|
_HOME_PAGE = "https://cardiffnlp.github.io" |
|
_LABEL_TYPE = "multi" |
|
_NAME = f"tweet_topic_{_LABEL_TYPE}" |
|
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset' |
|
_URLS = { |
|
str(datasets.Split.TEST): [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'], |
|
str(datasets.Split.TRAIN): [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'], |
|
str(datasets.Split.VALIDATION): [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'], |
|
f"temporal_2020_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2020.{_LABEL_TYPE}.json'], |
|
f"temporal_2021_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'], |
|
f"temporal_2020_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'], |
|
f"temporal_2021_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'], |
|
f"temporal_2020_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'], |
|
f"temporal_2021_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'], |
|
f"random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_random/train_random.{_LABEL_TYPE}.json'], |
|
f"random_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_random/validation_random.{_LABEL_TYPE}.json'], |
|
f"coling2022_random_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_random/test_random.{_LABEL_TYPE}.json'], |
|
f"coling2022_random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_random/train_random.{_LABEL_TYPE}.json'], |
|
f"coling2022_temporal_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_temporal/test_2021.{_LABEL_TYPE}.json'], |
|
f"coling2022_temporal_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_temporal/train_2020.{_LABEL_TYPE}.json'], |
|
} |
|
|
|
|
|
class TweetTopicSingleConfig(datasets.BuilderConfig): |
|
"""BuilderConfig""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TweetTopicSingleConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TweetTopicSingle(datasets.GeneratorBasedBuilder): |
|
"""Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TweetTopicSingleConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), |
|
] |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URLS) |
|
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()] |
|
|
|
def _generate_examples(self, filepaths): |
|
_key = 0 |
|
for filepath in filepaths: |
|
logger.info(f"generating examples from = {filepath}") |
|
with open(filepath, encoding="utf-8") as f: |
|
_list = [i for i in f.read().split('\n') if len(i) > 0] |
|
for i in _list: |
|
data = json.loads(i) |
|
yield _key, data |
|
_key += 1 |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"label": datasets.Sequence(datasets.Value("int32")), |
|
"label_name": datasets.Sequence(datasets.Value("string")), |
|
"id": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOME_PAGE, |
|
citation=_CITATION, |
|
) |
|
|