Datasets:

Languages:
English
ArXiv:
License:
tweet_topic_multi / lm_finetuning.py
asahi417's picture
Update lm_finetuning.py
19391a5
raw
history blame
9.01 kB
'''
wandb offline
export WANDB_DISABLED='true'
export RAY_RESULTS='ray_results'
python lm_finetuning.py -m "roberta-large" -c "ckpt/roberta_large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "roberta-base" -c "ckpt/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -c "ckpt/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -c "ckpt/twitter-roberta-base-dec2020"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -c "ckpt/twitter-roberta-base-dec2021"
'''
import argparse
import json
import logging
import os
import shutil
import urllib.request
import multiprocessing
from os.path import join as pj
import torch
import numpy as np
from huggingface_hub import create_repo
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from ray import tune
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
def internet_connection(host='http://google.com'):
try:
urllib.request.urlopen(host)
return True
except:
return False
def get_metrics():
metric_accuracy = load_metric("accuracy", "multilabel")
metric_f1 = load_metric("f1", "multilabel")
# metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro')
# metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]])
def compute_metric_search(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
def compute_metric_all(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
}
return compute_metric_search, compute_metric_all
def main():
parser = argparse.ArgumentParser(description='Fine-tuning language model.')
parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
parser.add_argument('--split-train', help='', required=True, type=str)
parser.add_argument('--split-validation', help='', required=True, type=str)
parser.add_argument('--split-test', help='', required=True, type=str)
parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
parser.add_argument('--random-seed', help='', default=42, type=int)
parser.add_argument('--eval-step', help='', default=50, type=int)
parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
parser.add_argument('-t', '--n-trials', default=10, type=int)
parser.add_argument('--push-to-hub', action='store_true')
parser.add_argument('--use-auth-token', action='store_true')
parser.add_argument('--hf-organization', default=None, type=str)
parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
parser.add_argument('--summary-file', default='metric_summary.json', type=str)
parser.add_argument('--skip-train', action='store_true')
parser.add_argument('--skip-eval', action='store_true')
opt = parser.parse_args()
assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
# setup data
dataset = load_dataset(opt.dataset)
network = internet_connection()
# setup model
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
model = AutoModelForSequenceClassification.from_pretrained(
opt.model,
num_labels=len(dataset[opt.split_train][0]['label']),
local_files_only=not network,
problem_type="multi_label_classification"
)
tokenized_datasets = dataset.map(
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
batched=True)
# setup metrics
compute_metric_search, compute_metric_all = get_metrics()
if not opt.skip_train:
# setup trainer
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="steps",
eval_steps=opt.eval_step,
seed=opt.random_seed
),
train_dataset=tokenized_datasets[opt.split_train],
eval_dataset=tokenized_datasets[opt.split_validation],
compute_metrics=compute_metric_search,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
opt.model, return_dict=True, num_labels=dataset[opt.split_train].features['label'].num_classes)
)
# parameter search
if PARALLEL:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
)
else:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
)
# finetuning
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
trainer.train()
trainer.save_model(pj(opt.output_dir, 'best_model'))
best_model_path = pj(opt.output_dir, 'best_model')
else:
best_model_path = opt.output_dir
# evaluation
model = AutoModelForSequenceClassification.from_pretrained(
best_model_path,
num_labels=dataset[opt.split_train].features['label'].num_classes,
local_files_only=not network)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="no",
seed=opt.random_seed
),
train_dataset=tokenized_datasets[opt.split_train],
eval_dataset=tokenized_datasets[opt.split_test],
compute_metrics=compute_metric_all,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
opt.model, return_dict=True, num_labels=dataset[opt.split_train].features['label'].num_classes)
)
summary_file = pj(opt.output_dir, opt.summary_file)
if not opt.skip_eval:
result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
logging.info(json.dumps(result, indent=4))
with open(summary_file, 'w') as f:
json.dump(result, f)
if opt.push_to_hub:
assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
# if not opt.skip_train:
args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
trainer.model.push_to_hub(opt.model_alias, **args)
tokenizer.push_to_hub(opt.model_alias, **args)
if os.path.exists(summary_file):
shutil.copy2(summary_file, opt.model_alias)
os.system(
f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
if __name__ == '__main__':
main()