|
import pandas as pd |
|
from datasets import load_dataset |
|
from sklearn.model_selection import train_test_split |
|
import urllib |
|
|
|
|
|
HATE = 1 |
|
NOT_HATE = 0 |
|
|
|
|
|
class_mapping = { |
|
'target_gender_aggregated': 0, |
|
'target_race_aggregated': 1, |
|
'target_sexuality_aggregated': 2, |
|
'target_religion_aggregated': 3, |
|
'target_origin_aggregated': 4, |
|
'target_disability_aggregated': 5, |
|
'target_age_aggregated': 6, |
|
'not_hate': 7 |
|
} |
|
|
|
|
|
|
|
def map_label(x): |
|
if x >= -1 and x <= 0.5: |
|
label = 999 |
|
elif x > 0.5: |
|
label = HATE |
|
elif x < -1: |
|
label = NOT_HATE |
|
return label |
|
|
|
|
|
def clean_text(text): |
|
text = text.replace('\n', ' ').replace('\r', ' ').replace('\t', ' ') |
|
|
|
new_text = [] |
|
for t in text.split(): |
|
|
|
t = '@user' if t.startswith('@') and len(t) > 1 and t.replace('@','').lower() not in verified_users else t |
|
t = '{URL}' if t.startswith('http') else t |
|
new_text.append(t) |
|
|
|
return ' '.join(new_text) |
|
|
|
|
|
|
|
dataset = load_dataset('ucberkeley-dlab/measuring-hate-speech') |
|
df = dataset['train'].to_pandas() |
|
|
|
|
|
df['annon_label'] = df['hate_speech_score'].apply(map_label) |
|
|
|
|
|
df = df[df['platform'] == 2] |
|
|
|
|
|
df = df[df['annon_label'].isin([HATE, NOT_HATE])] |
|
|
|
|
|
df_count_label = pd.DataFrame(df.groupby('comment_id')['annon_label'].value_counts()) |
|
df_count_label = df_count_label.rename(columns={'annon_label': 'count'}) |
|
df_count_label = df_count_label.reset_index(level=1) |
|
df_count_label = df_count_label[df_count_label['count'] >= 2] |
|
|
|
|
|
df = df.set_index('comment_id') |
|
df['label'] = None |
|
df['label'] = df_count_label['annon_label'] |
|
|
|
|
|
df = df[df['label'].notnull()] |
|
df = df.reset_index() |
|
|
|
|
|
targets = ['target_race', 'target_religion', 'target_origin', 'target_gender', |
|
'target_sexuality', 'target_age', 'target_disability'] |
|
|
|
|
|
for t in targets: |
|
|
|
df_count_targets = pd.DataFrame(df.groupby('comment_id')[t].value_counts()) |
|
df_count_targets = df_count_targets.rename(columns={t: 'count'}) |
|
df_count_targets = df_count_targets.reset_index(level=1) |
|
df_count_targets = df_count_targets[df_count_targets['count'] >= 2] |
|
|
|
|
|
df_count_targets = df_count_targets.loc[df_count_targets.index.drop_duplicates(keep=False)] |
|
|
|
|
|
df = df.set_index('comment_id') |
|
df[f'{t}_aggregated'] = False |
|
df[f'{t}_aggregated'] = df_count_targets[t] |
|
df[f'{t}_aggregated'] = df[f'{t}_aggregated'].fillna(False) |
|
df = df.reset_index() |
|
|
|
|
|
targets_aggregated = [f'{t}_aggregated' for t in targets] |
|
|
|
df['target'] = df[targets_aggregated].apply(lambda row: row[row].index, axis=1) |
|
|
|
|
|
df['target'] = df['target'].apply(lambda x: x[0] if len(x) == 1 else None) |
|
|
|
|
|
df = df.groupby('comment_id').nth(0) |
|
df = df.reset_index() |
|
|
|
|
|
|
|
|
|
idx_multiclass = df[df['label'] == 1].index |
|
idx_not_hate = df[df['label'] == 0].index |
|
|
|
|
|
df['gold_label'] = None |
|
df.loc[idx_not_hate, 'gold_label'] = 'not_hate' |
|
df.loc[idx_multiclass, 'gold_label'] = df.loc[idx_multiclass]['target'] |
|
|
|
|
|
df = df.dropna(subset='gold_label') |
|
|
|
|
|
verified_users = urllib.request.urlopen('https://raw.githubusercontent.com/cardiffnlp/timelms/main/data/verified_users.v091122.txt').readlines() |
|
verified_users = [x.decode().strip('\n').lower() for x in verified_users] |
|
|
|
|
|
df['text'] = df['text'].apply(clean_text) |
|
|
|
|
|
df['gold_label'] = df['gold_label'].map(class_mapping) |
|
|
|
|
|
|
|
test_size = int(0.2 * len(df)) |
|
val_size = int(0.1 * len(df)) |
|
|
|
train, test = train_test_split(df, test_size=test_size, stratify=df['gold_label'].values, random_state=4) |
|
train, val = train_test_split(train, test_size=val_size, stratify=train['gold_label'].values, random_state=4) |
|
|
|
|
|
cols_to_keep = ['gold_label', 'text'] |
|
train[cols_to_keep].to_json('../data/tweet_hate/train.jsonl', lines=True, orient='records') |
|
val[cols_to_keep].to_json('../data/tweet_hate/validation.jsonl', lines=True, orient='records') |
|
test[cols_to_keep].to_json('../data/tweet_hate/test.jsonl', lines=True, orient='records') |