|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
table = [] |
|
task_description = { |
|
'tweet_intimacy': "regression on a single text", |
|
'tweet_ner': "sequence labeling", |
|
'tweet_qa': "generation", |
|
'tweet_sim': "regression on two texts", |
|
'tweet_topic': "multi-label classification" |
|
} |
|
for task in ['tweet_intimacy', 'tweet_ner7', 'tweet_qa', 'tweet_sim', 'tweet_topic']: |
|
data = load_dataset("cardiffnlp/super_tweet_eval", task) |
|
tmp_table = {"task": task, "description": task_description[task]} |
|
tmp_table['number of instances'] = " / ".join([str(len(data[s])) for s in ['train', 'validation', 'test']]) |
|
|
|
|
|
df = pd.DataFrame(table) |
|
print(df.to_markdown(index=False)) |