init
Browse files
experiments/baseline_fasttext.py
CHANGED
@@ -37,14 +37,14 @@ def get_vector(_model, _word_a, _word_b):
|
|
37 |
|
38 |
|
39 |
# load dataset
|
40 |
-
data = load_dataset("cardiffnlp/
|
41 |
full_result = []
|
42 |
os.makedirs("./experiments/results/word_embedding/fasttext", exist_ok=True)
|
43 |
scorer = None
|
44 |
for d in data:
|
45 |
ppl_file = f"experiments/results/word_embedding/fasttext/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
46 |
|
47 |
-
anchor_embeddings = [(a, b) for a, b in d['
|
48 |
option_embeddings = [(x, y) for x, y in d['pairs']]
|
49 |
|
50 |
if not os.path.exists(ppl_file):
|
@@ -52,7 +52,7 @@ for d in data:
|
|
52 |
if scorer is None:
|
53 |
scorer = load_model()
|
54 |
|
55 |
-
anchor_embeddings = [get_vector(scorer, a, b) for a, b in d['
|
56 |
option_embeddings = [get_vector(scorer, x, y) for x, y in d['pairs']]
|
57 |
similarity = [[cosine_similarity(a, b) for b in anchor_embeddings] for a in option_embeddings]
|
58 |
output = [{"similarity": s} for s in similarity]
|
|
|
37 |
|
38 |
|
39 |
# load dataset
|
40 |
+
data = load_dataset("cardiffnlp/relentless", split="test")
|
41 |
full_result = []
|
42 |
os.makedirs("./experiments/results/word_embedding/fasttext", exist_ok=True)
|
43 |
scorer = None
|
44 |
for d in data:
|
45 |
ppl_file = f"experiments/results/word_embedding/fasttext/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
46 |
|
47 |
+
anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
|
48 |
option_embeddings = [(x, y) for x, y in d['pairs']]
|
49 |
|
50 |
if not os.path.exists(ppl_file):
|
|
|
52 |
if scorer is None:
|
53 |
scorer = load_model()
|
54 |
|
55 |
+
anchor_embeddings = [get_vector(scorer, a, b) for a, b in d['prototypical_examples']]
|
56 |
option_embeddings = [get_vector(scorer, x, y) for x, y in d['pairs']]
|
57 |
similarity = [[cosine_similarity(a, b) for b in anchor_embeddings] for a in option_embeddings]
|
58 |
output = [{"similarity": s} for s in similarity]
|
experiments/baseline_fasttext_zeroshot.py
CHANGED
@@ -31,14 +31,14 @@ def cosine_similarity(a, b):
|
|
31 |
|
32 |
|
33 |
# load dataset
|
34 |
-
data = load_dataset("cardiffnlp/
|
35 |
full_result = []
|
36 |
os.makedirs("./experiments/results/word_embedding/fasttext_zeroshot", exist_ok=True)
|
37 |
scorer = None
|
38 |
for d in data:
|
39 |
ppl_file = f"experiments/results/word_embedding/fasttext_zeroshot/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
40 |
|
41 |
-
anchor_embeddings = [(a, b) for a, b in d['
|
42 |
option_embeddings = [(x, y) for x, y in d['pairs']]
|
43 |
|
44 |
if not os.path.exists(ppl_file):
|
|
|
31 |
|
32 |
|
33 |
# load dataset
|
34 |
+
data = load_dataset("cardiffnlp/relentless", split="test")
|
35 |
full_result = []
|
36 |
os.makedirs("./experiments/results/word_embedding/fasttext_zeroshot", exist_ok=True)
|
37 |
scorer = None
|
38 |
for d in data:
|
39 |
ppl_file = f"experiments/results/word_embedding/fasttext_zeroshot/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
40 |
|
41 |
+
anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
|
42 |
option_embeddings = [(x, y) for x, y in d['pairs']]
|
43 |
|
44 |
if not os.path.exists(ppl_file):
|
experiments/baseline_oracle.py
CHANGED
@@ -2,7 +2,7 @@ from statistics import mean
|
|
2 |
import pandas as pd
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
-
data = load_dataset("cardiffnlp/
|
6 |
|
7 |
cor = []
|
8 |
for d in data:
|
|
|
2 |
import pandas as pd
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
+
data = load_dataset("cardiffnlp/relentless", split='test')
|
6 |
|
7 |
cor = []
|
8 |
for d in data:
|