Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
1b77ea8
·
1 Parent(s): 954cbd4
experiments/baseline_fasttext.py CHANGED
@@ -39,10 +39,10 @@ def get_vector(_model, _word_a, _word_b):
39
  # load dataset
40
  data = load_dataset("cardiffnlp/relentless", split="test")
41
  full_result = []
42
- os.makedirs("./experiments/results/word_embedding/fasttext", exist_ok=True)
43
  scorer = None
44
  for d in data:
45
- ppl_file = f"experiments/results/word_embedding/fasttext/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
46
 
47
  anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
48
  option_embeddings = [(x, y) for x, y in d['pairs']]
@@ -81,13 +81,11 @@ for d in data:
81
  cor_min = tmp.corr("spearman").values[0, 2]
82
  cor_mean = tmp.corr("spearman").values[0, 3]
83
  full_result.append({"model": "fastText\textsubscript{pair}", "relation_type": d['relation_type'], "correlation": cor_max})
84
- # full_result.append({"model": "fasttext (min)", "relation_type": d['relation_type'], "correlation": cor_min})
85
- # full_result.append({"model": "fastText", "relation_type": d['relation_type'], "correlation": cor_mean})
86
 
87
  df = pd.DataFrame(full_result)
88
  df = df.pivot(columns="relation_type", index="model", values="correlation")
89
  df['average'] = df.mean(1)
90
- df.to_csv("experiments/results/word_embedding/fasttext.csv")
91
  df = (100 * df).round()
92
  print(df.to_markdown())
93
  print(df.to_latex())
 
39
  # load dataset
40
  data = load_dataset("cardiffnlp/relentless", split="test")
41
  full_result = []
42
+ os.makedirs("results/word_embedding/fasttext", exist_ok=True)
43
  scorer = None
44
  for d in data:
45
+ ppl_file = f"results/word_embedding/fasttext/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
46
 
47
  anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
48
  option_embeddings = [(x, y) for x, y in d['pairs']]
 
81
  cor_min = tmp.corr("spearman").values[0, 2]
82
  cor_mean = tmp.corr("spearman").values[0, 3]
83
  full_result.append({"model": "fastText\textsubscript{pair}", "relation_type": d['relation_type'], "correlation": cor_max})
 
 
84
 
85
  df = pd.DataFrame(full_result)
86
  df = df.pivot(columns="relation_type", index="model", values="correlation")
87
  df['average'] = df.mean(1)
88
+ df.to_csv("results/word_embedding/fasttext.csv")
89
  df = (100 * df).round()
90
  print(df.to_markdown())
91
  print(df.to_latex())
experiments/baseline_fasttext_zeroshot.py CHANGED
@@ -33,10 +33,10 @@ def cosine_similarity(a, b):
33
  # load dataset
34
  data = load_dataset("cardiffnlp/relentless", split="test")
35
  full_result = []
36
- os.makedirs("./experiments/results/word_embedding/fasttext_zeroshot", exist_ok=True)
37
  scorer = None
38
  for d in data:
39
- ppl_file = f"experiments/results/word_embedding/fasttext_zeroshot/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
40
 
41
  anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
42
  option_embeddings = [(x, y) for x, y in d['pairs']]
@@ -65,7 +65,7 @@ for d in data:
65
  df = pd.DataFrame(full_result)
66
  df = df.pivot(columns="relation_type", index="model", values="correlation")
67
  df['average'] = df.mean(1)
68
- df.to_csv("experiments/results/word_embedding/fasttext_zeroshot.csv")
69
  df = (100 * df).round()
70
  print(df.to_markdown())
71
  print(df.to_latex())
 
33
  # load dataset
34
  data = load_dataset("cardiffnlp/relentless", split="test")
35
  full_result = []
36
+ os.makedirs("results/word_embedding/fasttext_zeroshot", exist_ok=True)
37
  scorer = None
38
  for d in data:
39
+ ppl_file = f"results/word_embedding/fasttext_zeroshot/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
40
 
41
  anchor_embeddings = [(a, b) for a, b in d['prototypical_examples']]
42
  option_embeddings = [(x, y) for x, y in d['pairs']]
 
65
  df = pd.DataFrame(full_result)
66
  df = df.pivot(columns="relation_type", index="model", values="correlation")
67
  df['average'] = df.mean(1)
68
+ df.to_csv("results/word_embedding/fasttext_zeroshot.csv")
69
  df = (100 * df).round()
70
  print(df.to_markdown())
71
  print(df.to_latex())