File size: 34,785 Bytes
586ab0a
 
 
 
 
 
 
 
 
 
 
 
 
5ee7733
bfeba45
817babe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4acdc2b
 
 
 
 
 
bfeba45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd1162f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee7733
 
 
 
cbf1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee7733
 
cbf1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586ab0a
a7090e1
 
72fe917
 
a7090e1
 
 
 
 
3b7f393
 
 
dedccd2
a7090e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94798c
a7090e1
 
 
e35c688
 
a7090e1
 
b94798c
a7090e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b8b7e
3b7f393
f2b8b7e
8d3636b
 
 
be7767b
f2b8b7e
 
45280d3
f2b8b7e
 
 
 
 
be7767b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
---
language: 
- en
- es
pretty_name: " 💾🏋️💾 DataBench 💾🏋️💾"
tags:
- table-question-answering
- table
- qa
license: mit
task_categories:
- table-question-answering
- question-answering
configs:
- config_name: default
  data_files:
    - data/001_Forbes/qa.csv
    - data/002_Titanic/qa.csv
    - data/003_Love/qa.csv
    - data/004_Taxi/qa.csv
    - data/005_NYC/qa.csv
    - data/006_London/qa.csv
    - data/007_Fifa/qa.csv
    - data/008_Tornados/qa.csv
    - data/009_Central/qa.csv
    - data/010_ECommerce/qa.csv
    - data/011_SF/qa.csv
    - data/012_Heart/qa.csv
    - data/013_Roller/qa.csv
    - data/014_Airbnb/qa.csv
    - data/015_Food/qa.csv
    - data/016_Holiday/qa.csv
    - data/017_Hacker/qa.csv
    - data/018_Staff/qa.csv
    - data/019_Aircraft/qa.csv
    - data/020_Real/qa.csv
    - data/021_Telco/qa.csv
    - data/022_Airbnbs/qa.csv
    - data/023_Climate/qa.csv
    - data/024_Salary/qa.csv
    - data/025_Data/qa.csv
    - data/026_Predicting/qa.csv
    - data/027_Supermarket/qa.csv
    - data/028_Predict/qa.csv
    - data/029_NYTimes/qa.csv
    - data/030_Professionals/qa.csv
    - data/031_Trustpilot/qa.csv
    - data/032_Delicatessen/qa.csv
    - data/033_Employee/qa.csv
    - data/034_World/qa.csv
    - data/035_Billboard/qa.csv
    - data/036_US/qa.csv
    - data/037_Ted/qa.csv
    - data/038_Stroke/qa.csv
    - data/039_Happy/qa.csv
    - data/040_Speed/qa.csv
    - data/041_Airline/qa.csv
    - data/042_Predict/qa.csv
    - data/043_Predict/qa.csv
    - data/044_IMDb/qa.csv
    - data/045_Predict/qa.csv
    - data/046_120/qa.csv
    - data/047_Bank/qa.csv
    - data/048_Data/qa.csv
    - data/049_Boris/qa.csv
    - data/050_ING/qa.csv
    - data/051_Pokemon/qa.csv
    - data/052_Professional/qa.csv
    - data/053_Patents/qa.csv
    - data/054_Joe/qa.csv
    - data/055_German/qa.csv
    - data/056_Emoji/qa.csv
    - data/057_Spain/qa.csv
    - data/058_US/qa.csv
    - data/059_Second/qa.csv
    - data/060_Bakery/qa.csv
    - data/061_Disneyland/qa.csv
    - data/062_Trump/qa.csv
    - data/063_Influencers/qa.csv
    - data/064_Clustering/qa.csv
    - data/065_RFM/qa.csv
- config_name: 001_Forbes
  data_files:
    - split: full
      path: data/001_Forbes/all.parquet
    - split: lite
      path: data/001_Forbes/sample.csv
- config_name: data
  data_files:
    - split: 001_Forbes
      path: data/001_Forbes/all.parquet
    - split: 002_Titanic
      path: data/002_Titanic/all.parquet
    - split: 003_Love
      path: data/003_Love/all.parquet
    - split: 004_Taxi
      path: data/004_Taxi/all.parquet
    - split: 005_NYC
      path: data/005_NYC/all.parquet
    - split: 006_London
      path: data/006_London/all.parquet
    - split: 007_Fifa
      path: data/007_Fifa/all.parquet
    - split: 008_Tornados
      path: data/008_Tornados/all.parquet
    - split: 009_Central
      path: data/009_Central/all.parquet
    - split: 010_ECommerce
      path: data/010_ECommerce/all.parquet
    - split: 011_SF
      path: data/011_SF/all.parquet
    - split: 012_Heart
      path: data/012_Heart/all.parquet
    - split: 013_Roller
      path: data/013_Roller/all.parquet
    - split: 014_Airbnb
      path: data/014_Airbnb/all.parquet
    - split: 015_Food
      path: data/015_Food/all.parquet
    - split: 016_Holiday
      path: data/016_Holiday/all.parquet
    - split: 017_Hacker
      path: data/017_Hacker/all.parquet
    - split: 018_Staff
      path: data/018_Staff/all.parquet
    - split: 019_Aircraft
      path: data/019_Aircraft/all.parquet
    - split: 020_Real
      path: data/020_Real/all.parquet
    - split: 021_Telco
      path: data/021_Telco/all.parquet
    - split: 022_Airbnbs
      path: data/022_Airbnbs/all.parquet
    - split: 023_Climate
      path: data/023_Climate/all.parquet
    - split: 024_Salary
      path: data/024_Salary/all.parquet
    - split: 025_Data
      path: data/025_Data/all.parquet
    - split: 026_Predicting
      path: data/026_Predicting/all.parquet
    - split: 027_Supermarket
      path: data/027_Supermarket/all.parquet
    - split: 028_Predict
      path: data/028_Predict/all.parquet
    - split: 029_NYTimes
      path: data/029_NYTimes/all.parquet
    - split: 030_Professionals
      path: data/030_Professionals/all.parquet
    - split: 031_Trustpilot
      path: data/031_Trustpilot/all.parquet
    - split: 032_Delicatessen
      path: data/032_Delicatessen/all.parquet
    - split: 033_Employee
      path: data/033_Employee/all.parquet
    - split: 034_World
      path: data/034_World/all.parquet
    - split: 035_Billboard
      path: data/035_Billboard/all.parquet
    - split: 036_US
      path: data/036_US/all.parquet
    - split: 037_Ted
      path: data/037_Ted/all.parquet
    - split: 038_Stroke
      path: data/038_Stroke/all.parquet
    - split: 039_Happy
      path: data/039_Happy/all.parquet
    - split: 040_Speed
      path: data/040_Speed/all.parquet
    - split: 041_Airline
      path: data/041_Airline/all.parquet
    - split: 042_Predict
      path: data/042_Predict/all.parquet
    - split: 043_Predict
      path: data/043_Predict/all.parquet
    - split: 044_IMDb
      path: data/044_IMDb/all.parquet
    - split: 045_Predict
      path: data/045_Predict/all.parquet
    - split: "046_120"
      path: data/046_120/all.parquet
    - split: 047_Bank
      path: data/047_Bank/all.parquet
    - split: 048_Data
      path: data/048_Data/all.parquet
    - split: 049_Boris
      path: data/049_Boris/all.parquet
    - split: 050_ING
      path: data/050_ING/all.parquet
    - split: 051_Pokemon
      path: data/051_Pokemon/all.parquet
    - split: 052_Professional
      path: data/052_Professional/all.parquet
    - split: 053_Patents
      path: data/053_Patents/all.parquet
    - split: 054_Joe
      path: data/054_Joe/all.parquet
    - split: 055_German
      path: data/055_German/all.parquet
    - split: 056_Emoji
      path: data/056_Emoji/all.parquet
    - split: 057_Spain
      path: data/057_Spain/all.parquet
    - split: 058_US
      path: data/058_US/all.parquet
    - split: 059_Second
      path: data/059_Second/all.parquet
    - split: 060_Bakery
      path: data/060_Bakery/all.parquet
    - split: 061_Disneyland
      path: data/061_Disneyland/all.parquet
    - split: 062_Trump
      path: data/062_Trump/all.parquet
    - split: 063_Influencers
      path: data/063_Influencers/all.parquet
    - split: 064_Clustering
      path: data/064_Clustering/all.parquet
    - split: 065_RFM
      path: data/065_RFM/all.parquet
- config_name: data_lite
  data_files:
  - split: 001_Forbes
    path: data/001_Forbes/sample.csv
  - split: 002_Titanic
    path: data/002_Titanic/sample.csv
  - split: 003_Love
    path: data/003_Love/sample.csv
  - split: 004_Taxi
    path: data/004_Taxi/sample.csv
  - split: 005_NYC
    path: data/005_NYC/sample.csv
  - split: 006_London
    path: data/006_London/sample.csv
  - split: 007_Fifa
    path: data/007_Fifa/sample.csv
  - split: 008_Tornados
    path: data/008_Tornados/sample.csv
  - split: 009_Central
    path: data/009_Central/sample.csv
  - split: 010_ECommerce
    path: data/010_ECommerce/sample.csv
  - split: 011_SF
    path: data/011_SF/sample.csv
  - split: 012_Heart
    path: data/012_Heart/sample.csv
  - split: 013_Roller
    path: data/013_Roller/sample.csv
  - split: 014_Airbnb
    path: data/014_Airbnb/sample.csv
  - split: 015_Food
    path: data/015_Food/sample.csv
  - split: 016_Holiday
    path: data/016_Holiday/sample.csv
  - split: 017_Hacker
    path: data/017_Hacker/sample.csv
  - split: 018_Staff
    path: data/018_Staff/sample.csv
  - split: 019_Aircraft
    path: data/019_Aircraft/sample.csv
  - split: 020_Real
    path: data/020_Real/sample.csv
  - split: 021_Telco
    path: data/021_Telco/sample.csv
  - split: 022_Airbnbs
    path: data/022_Airbnbs/sample.csv
  - split: 023_Climate
    path: data/023_Climate/sample.csv
  - split: 024_Salary
    path: data/024_Salary/sample.csv
  - split: 025_Data
    path: data/025_Data/sample.csv
  - split: 026_Predicting
    path: data/026_Predicting/sample.csv
  - split: 027_Supermarket
    path: data/027_Supermarket/sample.csv
  - split: 028_Predict
    path: data/028_Predict/sample.csv
  - split: 029_NYTimes
    path: data/029_NYTimes/sample.csv
  - split: 030_Professionals
    path: data/030_Professionals/sample.csv
  - split: 031_Trustpilot
    path: data/031_Trustpilot/sample.csv
  - split: 032_Delicatessen
    path: data/032_Delicatessen/sample.csv
  - split: 033_Employee
    path: data/033_Employee/sample.csv
  - split: 034_World
    path: data/034_World/sample.csv
  - split: 035_Billboard
    path: data/035_Billboard/sample.csv
  - split: 036_US
    path: data/036_US/sample.csv
  - split: 037_Ted
    path: data/037_Ted/sample.csv
  - split: 038_Stroke
    path: data/038_Stroke/sample.csv
  - split: 039_Happy
    path: data/039_Happy/sample.csv
  - split: 040_Speed
    path: data/040_Speed/sample.csv
  - split: 041_Airline
    path: data/041_Airline/sample.csv
  - split: 042_Predict
    path: data/042_Predict/sample.csv
  - split: 043_Predict
    path: data/043_Predict/sample.csv
  - split: 044_IMDb
    path: data/044_IMDb/sample.csv
  - split: 045_Predict
    path: data/045_Predict/sample.csv
  - split: "046_120"
    path: data/046_120/sample.csv
  - split: 047_Bank
    path: data/047_Bank/sample.csv
  - split: 048_Data
    path: data/048_Data/sample.csv
  - split: 049_Boris
    path: data/049_Boris/sample.csv
  - split: 050_ING
    path: data/050_ING/sample.csv
  - split: 051_Pokemon
    path: data/051_Pokemon/sample.csv
  - split: 052_Professional
    path: data/052_Professional/sample.csv
  - split: 053_Patents
    path: data/053_Patents/sample.csv
  - split: 054_Joe
    path: data/054_Joe/sample.csv
  - split: 055_German
    path: data/055_German/sample.csv
  - split: 056_Emoji
    path: data/056_Emoji/sample.csv
  - split: 057_Spain
    path: data/057_Spain/sample.csv
  - split: 058_US
    path: data/058_US/sample.csv
  - split: 059_Second
    path: data/059_Second/sample.csv
  - split: 060_Bakery
    path: data/060_Bakery/sample.csv
  - split: 061_Disneyland
    path: data/061_Disneyland/sample.csv
  - split: 062_Trump
    path: data/062_Trump/sample.csv
  - split: 063_Influencers
    path: data/063_Influencers/sample.csv
  - split: 064_Clustering
    path: data/064_Clustering/sample.csv
  - split: 065_RFM
    path: data/065_RFM/sample.csv
- config_name: semeval
  data_files:
  - split: train
    path:
      - data/001_Forbes/qa.csv
      - data/002_Titanic/qa.csv
      - data/003_Love/qa.csv
      - data/004_Taxi/qa.csv
      - data/005_NYC/qa.csv
      - data/006_London/qa.csv
      - data/007_Fifa/qa.csv
      - data/008_Tornados/qa.csv
      - data/009_Central/qa.csv
      - data/010_ECommerce/qa.csv
      - data/011_SF/qa.csv
      - data/012_Heart/qa.csv
      - data/013_Roller/qa.csv
      - data/014_Airbnb/qa.csv
      - data/015_Food/qa.csv
      - data/016_Holiday/qa.csv
      - data/017_Hacker/qa.csv
      - data/018_Staff/qa.csv
      - data/019_Aircraft/qa.csv
      - data/020_Real/qa.csv
      - data/021_Telco/qa.csv
      - data/022_Airbnbs/qa.csv
      - data/023_Climate/qa.csv
      - data/024_Salary/qa.csv
      - data/025_Data/qa.csv
      - data/026_Predicting/qa.csv
      - data/027_Supermarket/qa.csv
      - data/028_Predict/qa.csv
      - data/029_NYTimes/qa.csv
      - data/030_Professionals/qa.csv
      - data/031_Trustpilot/qa.csv
      - data/032_Delicatessen/qa.csv
      - data/033_Employee/qa.csv
      - data/034_World/qa.csv
      - data/035_Billboard/qa.csv
      - data/036_US/qa.csv
      - data/037_Ted/qa.csv
      - data/038_Stroke/qa.csv
      - data/039_Happy/qa.csv
      - data/040_Speed/qa.csv
      - data/041_Airline/qa.csv
      - data/042_Predict/qa.csv
      - data/043_Predict/qa.csv
      - data/044_IMDb/qa.csv
      - data/045_Predict/qa.csv
      - data/046_120/qa.csv
      - data/047_Bank/qa.csv
      - data/048_Data/qa.csv
      - data/049_Boris/qa.csv
  - split: test
    path:
      - data/050_ING/qa.csv
      - data/051_Pokemon/qa.csv
      - data/052_Professional/qa.csv
      - data/053_Patents/qa.csv
      - data/054_Joe/qa.csv
      - data/055_German/qa.csv
      - data/056_Emoji/qa.csv
      - data/057_Spain/qa.csv
      - data/058_US/qa.csv
      - data/059_Second/qa.csv
      - data/060_Bakery/qa.csv
      - data/061_Disneyland/qa.csv
      - data/062_Trump/qa.csv
      - data/063_Influencers/qa.csv
      - data/064_Clustering/qa.csv
      - data/065_RFM/qa.csv

---
# 💾🏋️💾 DataBench 💾🏋️💾

This repository contains the original 65 datasets used for the paper [Question Answering over Tabular Data with DataBench:
A Large-Scale Empirical Evaluation of LLMs](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf) which appeared in LREC-COLING 2024.

Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones is tabular
reasoning in question answering on tabular data. Although there are some available datasets to assess question
answering systems on tabular data, they are not large and diverse enough to evaluate this new ability of LLMs.
To this end, we provide a corpus of 65 real world datasets, with 3,269,975 and 1615 columns in total, and 1300 questions to evaluate your models for the task of QA over Tabular Data.


## 📚 Datasets
By clicking on each name in the table below, you will be able to explore each dataset.

|    | Name                           |   Rows |   Cols | Domain                     | Source (Reference)                                                                                                                |
|---:|:-------------------------------|-------:|-------:|:---------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|  1 | [Forbes](https://public.graphext.com/0b211530c7e213d3/index.html?section=data)                         |   2668 |     17 | Business                   | [Forbes](https://www.forbes.com/billionaires/)|
|  2 | [Titanic](https://public.graphext.com/8577225c5ffd88fd/index.html)                        |    887 |      8 | Travel and Locations       | [Kaggle](https://www.kaggle.com/competitions/titanic/data)|
|  3 | [Love](https://public.graphext.com/be7a566b0c485916/index.html)                           |    373 |     35 | Social Networks and Surveys | [Graphext](https://public.graphext.com/1de78f6820cfd5ba/index.html)                                                            |
|  4 | [Taxi](https://public.graphext.com/bcee13c23070f333/index.html)                           | 100000 |     20 | Travel and Locations       | [Kaggle](https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview)                                                 |
|  5 | [NYC Calls](https://public.graphext.com/1ce2f5fae408621e/index.html)                      | 100000 |     46 | Business                   | [City of New York](https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup)                                       |
|  6 | [London Airbnbs](https://public.graphext.com/6bbf4bbd3ff279c0/index.html)                 |  75241 |     74 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/labdmitriy/airbnb)                                                                   |
|  7 | [Fifa](https://public.graphext.com/37bca51494c10a79/index.html)                           |  14620 |     59 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset)                                      |
|  8 | [Tornados](https://public.graphext.com/4be9872e031199c3/index.html)                       |  67558 |     14 | Health                     | [Kaggle](https://www.kaggle.com/datasets/danbraswell/us-tornado-dataset-1950-2021)                                             |
|  9 | [Central Park](https://public.graphext.com/7b3d3a4d7bf1e9b5/index.html)                   |  56245 |      6 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/danbraswell/new-york-city-weather-18692022)                                          |
| 10 | [ECommerce Reviews](https://public.graphext.com/a5b8911b215958ad/index.html)              |  23486 |     10 | Business                   | [Kaggle](https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews)                                        |
| 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html)                      | 713107 |     35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present)                                 |
| 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html)                  |    918 |     12 | Health                     | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction)                                                |
| 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html)                |   1087 |     56 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database)                                                    |
| 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html)                   |  20776 |     75 | Travel and Locations       | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.csv.gz)                 |
| 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html)           |    906 |      4 | Business                   | [Data World](https://data.world/alexandra/generic-food-database)                                                        |
| 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html)           |   4888 |     20 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction)                                 |
| 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html)                    |   9429 |     20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news)                                                              |
| 18 | [Staff Satisfaction](https://public.graphext.com/6822ac1ce6307fec/index.html)              |  14999 |     11 | Business                   | [Kaggle](https://www.kaggle.com/datasets/mohamedharris/employee-satisfaction-index-dataset)                                     |
| 19 | [Aircraft Accidents](https://public.graphext.com/1802117b1b14f5c5/index.html)              |  23519 |     23 | Health                     | [Kaggle](https://www.kaggle.com/datasets/ramjasmaurya/aviation-accidents-history1919-april-2022)                               |
| 20 | [Real Estate Madrid](https://public.graphext.com/5f83ec219a7ea84f/index.html)              |  26026 |     59 | Business                   | [Idealista](https://public.graphext.com/5f83ec219a7ea84f/index.html)                                                            |
| 21 | [Telco Customer Churn](https://public.graphext.com/362cd8e3e96f70d4/index.html)           |   7043 |     21 | Business                   | [Kaggle](https://www.kaggle.com/datasets/blastchar/telco-customer-churn)                                                       |
| 22 | [Airbnbs Listings NY](https://public.graphext.com/77265ea3a63e650f/index.html)            |  37012 |     33 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data)                                              |
| 23 | [Climate in Madrid](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data)                 |  36858 |     26 | Travel and Locations       | [AEMET](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data)                                                   |
| 24 | [Salary Survey Spain 2018](https://public.graphext.com/24d1e717ba01aa3d/index.html)        | 216726 |     29 | Business                   | [INE](ine.es)                                                                                                                  |
| 25 | [Data Driven SEO   ](https://public.graphext.com/4e5b1cac9ebdfa44/index.html)              |     62 |      5 | Business                   | [Graphext](https://www.graphext.com/post/data-driven-seo-a-keyword-optimization-guide-using-web-scraping-co-occurrence-analysis-graphext-deepnote-adwords) |
| 26 | [Predicting Wine Quality](https://public.graphext.com/de04acf5d18a9aea/index.html)         |   1599 |     12 | Business                   | [Kaggle](https://www.kaggle.com/datasets/yasserh/wine-quality-dataset)                                                          |
| 27 | [Supermarket Sales](https://public.graphext.com/9a6742da6a8d8f7f/index.html)               |   1000 |     17 | Business                   | [Kaggle](https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales)                                                          |
| 28 | [Predict Diabetes](https://public.graphext.com/def4bada27af324c/index.html)                |    768 |      9 | Health                     | [Kaggle](https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset)                                              |
| 29 | [NYTimes World In 2021](https://public.graphext.com/af4c8eef1757973c/index.html?section=data)           |  52588 |      5 | Travel and Locations       | [New York Times](https://public.graphext.com/af4c8eef1757973c/index.html)                                                       |
| 30 | [Professionals Kaggle Survey](https://public.graphext.com/3a2e87f90363a85d/index.html)     |  19169 |     64 | Business                   | [Kaggle](https://www.kaggle.com/c/kaggle-survey-2021/data)                                                                     |
| 31 | [Trustpilot Reviews](https://public.graphext.com/367e29432331fbfd/index.html?section=data)             |   8020 |      6 | Business                   | [TrustPilot](https://public.graphext.com/367e29432331fbfd/index.html?section=data)                                              |
| 32 | [Delicatessen Customers](https://public.graphext.com/a1687589fbde07bc/index.html)         |   2240 |     29 | Business                   | [Kaggle](https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign)                                                         |
| 33 | [Employee Attrition](https://public.graphext.com/07a91a15ecf2b8f6/index.html)             |  14999 |     11 | Business                   | [Kaggle(modified)](https://www.kaggle.com/datasets/pavan9065/predicting-employee-attrition)                                               |
| 34 | [World Happiness Report 2020](https://public.graphext.com/754c83ff0a7ba087/index.html)     |    153 |     20 | Social Networks and Surveys | [World Happiness](https://worldhappiness.report/data/)                                                                         |
| 35 | [Billboard Lyrics](https://public.graphext.com/7e0b009e8d0af719/index.html)               |   5100 |      6 | Sports and Entertainment  | [Brown University](https://cs.brown.edu/courses/cs100/students/project11/)                                                        |
| 36 | [US Migrations 2012-2016](https://public.graphext.com/dbdadf87a5c21695/index.html)         | 288300 |      9 | Social Networks and Surveys | [US Census](https://www.census.gov/topics/population/migration/guidance/county-to-county-migration-flows.html)                 |
| 37 | [Ted Talks](https://public.graphext.com/07e48466fb670904/index.html)                       |   4005 |     19 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ashishjangra27/ted-talks)                                                             |
| 38 | [Stroke Likelihood](https://public.graphext.com/20ccfee9e84948e3/index.html)               |   5110 |     12 | Health                     | [Kaggle](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease)                                   |
| 39 | [Happy Moments](https://public.graphext.com/9b86efff48989701/index.html)                   | 100535 |     11 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ritresearch/happydb)                                                                  |
| 40 | [Speed Dating](https://public.graphext.com/f1912daad7870be0/index.html)                    |   8378 |    123 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ulrikthygepedersen/speed-dating)                                                       |
| 41 | [Airline Mentions X (former Twitter)](https://public.graphext.com/29cb7f73f6e17a38/index.html)  | 14640 |     15 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/7e6999327d1f83fd/index.html)                                                   |
| 42 | [Predict Student Performance](https://public.graphext.com/def4bada27af324c/index.html)     |    395 |     33 | Business                   | [Kaggle](https://www.kaggle.com/datasets/impapan/student-performance-data-set)                                                  |
| 43 | [Loan Defaults](https://public.graphext.com/0c7fb68ab8071a1f/index.html)                  |  83656 |     20 | Business                   | [SBA](https://www.kaggle.com/datasets/mirbektoktogaraev/should-this-loan-be-approved-or-denied)                                |
| 44 | [IMDb Movies](https://public.graphext.com/e23e33774872c496/index.html)                     |  85855 |     22 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows)                        |
| 45 | [Spotify Song Popularity](https://public.graphext.com/def4bada27af324c/index.html)                  |  21000 |     19 | Sports and Entertainment  | [Spotify](https://www.kaggle.com/datasets/tomigelo/spotify-audio-features)                                                      |
| 46 | [120 Years Olympics](https://public.graphext.com/e57d5e2f172c9a99/index.html)              | 271116 |     15 | Sports and Entertainment  | [Kaggle](https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results)                           |
| 47 | [Bank Customer Churn](https://public.graphext.com/e8f7aeacd209f74a/index.html)             |   7088 |     15 | Business                   | [Kaggle](https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers)                                                      |
| 48 | [Data Science Salary Data](https://public.graphext.com/4e5b1cac9ebdfa44/index.html)        |    742 |     28 | Business                   | [Kaggle](https://www.kaggle.com/datasets/ruchi798/data-science-job-salaries)                                                    |
| 49 | [Boris Johnson UK PM Tweets](https://public.graphext.com/f6623a1ca0f41c8e/index.html)      |   3220 |     34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/f6623a1ca0f41c8e/index.html)                                                  |
| 50 | [ING 2019 X Mentions](https://public.graphext.com/075030310aa702c6/index.html)  |   7244 |     22 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/075030310aa702c6/index.html)                                                  |
| 51 | [Pokemon Features](https://public.graphext.com/f30d4d863a2e6b01/index.html)     |   1072 |     13 | Business                   | [Kaggle](https://www.kaggle.com/datasets/rounakbanik/pokemon)                                                                  |
| 52 | [Professional Map](https://public.graphext.com/70af2240cb751968/index.html)               |   1227 |     12 | Business                   | [Kern et al, PNAS'20](https://github.com/behavioral-ds/VocationMap)                                                            |
| 53 | [Google Patents](https://public.graphext.com/a262300e31874716/index.html)                 |   9999 |     20 | Business                   | [BigQuery](https://www.kaggle.com/datasets/bigquery/patents/data)                                                              |
| 54 | [Joe Biden Tweets](https://public.graphext.com/33fa2efa41541ab1/index.html)               |    491 |     34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/339cee259f0a9b32/index.html?section=data)                                       |
55 | [German Loans](https://public.graphext.com/d3f5e425e9d4b0a1/index.html)                   |   1000 |     18 | Business                   | [Kaggle](https://www.kaggle.com/datasets/uciml/german-credit/data)                                                     |
| 56 | [Emoji Diet](https://public.graphext.com/e721cc7d790c06d4/index.html)                     |     58 |     35 | Health                     | [Kaggle](https://www.kaggle.com/datasets/ofrancisco/emoji-diet-nutritional-data-sr28)                                          |
| 57 | [Spain Survey 2015](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data)              |  20000 |     45 | Social Networks and Surveys | [CIS](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data)                                                     |
| 58 | [US Polls 2020](https://public.graphext.com/dbdadf87a5c21695/index.html)                   |   3523 |     52 | Social Networks and Surveys | [Brandwatch](https://www.brandwatch.com/p/us-election-raw-polling-data/)                                                       |
| 59 | [Second Hand Cars](https://public.graphext.com/543d0c49d7120ca0/index.html)                |  50000 |     21 | Business                   | [DataMarket](https://www.kaggle.com/datasets/datamarket/venta-de-coches)                                                       |
| 60 | [Bakery Purchases](https://public.graphext.com/6f2102e80f47a192/index.html)                |  20507 |      5 | Business                   | [Kaggle](https://www.kaggle.com/code/xvivancos/market-basket-analysis/report)                                                   |
| 61 | [Disneyland Customer Reviews](https://public.graphext.com/b1037bb566b7b316/index.html)     |  42656 |      6 | Travel and Locations       | [Kaggle](https://www.kaggle.com/datasets/arushchillar/disneyland-reviews)                                                      |
| 62 | [Trump Tweets](https://public.graphext.com/7aff94c3b7f159fc/index.html)                    |  15039 |     20 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/be903c098a90e46f/index.html?section=data)                                       |
| 63 | [Influencers](https://public.graphext.com/e097f1ea03d761a9/index.html)                    |   1039 |     14 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/e097f1ea03d761a9/index.html)                                                   |
| 64 | [Clustering Zoo Animals](https://public.graphext.com/d1b66902e46a712a/index.html)          |    101 |     18 | Health                     | [Kaggle](https://www.kaggle.com/datasets/jirkadaberger/zoo-animals)                                                            |
| 65 | [RFM Analysis](https://public.graphext.com/4db2e54e29006a21/index.html)                   | 541909 |      8 | Business                   | [UCI ML](https://www.kaggle.com/datasets/carrie1/ecommerce-data)                                                               |

## 🏗️ Folder structure
Each folder represents one dataset. You will find the following files within:

* all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html).
* qa.csv: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite)
* sample.csv: sample containing 20 rows of the original dataset (DataBench lite)
* info.yml: additional information about the dataset

## 🗂️ Column typing system
In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source [Lector](https://github.com/graphext/lector) reader.

What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following panda’s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now they’re all UTC), as well as information about categories’ cardinality coming from the arrow types.

In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements.

| Type           | Columns | Example                 |
| -------------- | ------- | ----------------------- |
| number         | 788     | 55                      |
| category       | 548     | apple                   |
| date           | 50      | 1970-01-01              |
| text           | 46      | A red fox ran...        |
| url            | 31      | google.com              |
| boolean        | 18      | True                    |
| list[number]   | 14      | [1,2,3]                 |
| list[category] | 112     | [apple, orange, banana] |
| list[url]      | 8       | [google.com, apple.com] |

## 🔗 Reference

You can download the paper [here](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf).

If you use this resource, please use the following reference:
```
@inproceedings{oses-etal-2024-databench,
    title = "Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs",
    author = "Jorge Osés Grijalba and Luis Alfonso Ureña-López and
    Eugenio Martínez Cámara and Jose Camacho-Collados",
    booktitle = "Proceedings of LREC-COLING 2024",
    year = "2024",
    address = "Turin, Italy"
}
```