File size: 7,266 Bytes
c52228e
 
 
 
780bb93
 
c52228e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780bb93
 
 
 
 
 
c52228e
780bb93
 
 
c52228e
780bb93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c52228e
 
780bb93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c52228e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.metrics import mean_absolute_error


sns.set_theme()

def read_results(filename):
    with open(filename, "r") as f:
        lines = f.readlines()

        preds_values = []
        actual_values = []
        mae_values = []

        for line in lines:
            if line.startswith("Preds:"):
                preds = line.replace("[", "")
                preds = preds.replace("]", "")
                preds = preds.strip("Preds:")
                preds = preds.strip()
                preds = preds.split(",")
                preds = [p.strip() for p in preds]
                preds = np.asarray([float(p) for p in preds])
                preds_values.append(preds)

            if line.startswith("Actual:"):
                actual = line.replace("[", "")
                actual = actual.replace("]", "")
                actual = actual.strip("Actual values:")
                actual = actual.strip()
                actual = actual.split(",")
                actual = [a.strip() for a in actual]
                actual = np.asarray([float(a) for a in actual])
                actual_values.append(actual)

            if line.startswith("MAE"):
                mae = float(line.split()[-1])
                mae_values.append(mae)
    return preds_values, actual_values, mae_values


def plot_distribution(preds_values, actual_values, mae_values, model_name, threshold, oversampled):
    for i in range(2):
        if i == 0:
            input_type = "BoW"
        else:
            input_type = "TF-IDF"
        preds = preds_values[i]
        actual = actual_values[i]
        mae = mae_values[i]

        res = pd.DataFrame()
        res["Prediction"] = preds
        res["Actual"] = actual

        sns.displot(res, kind="kde")
        plt.xlabel("Home standard score")
        plt.title(f"Model: {model_name}, Input type: {input_type}, MAE: {mae}, Threshold:{threshold}",
                  fontsize = 10)
        plt.ylim(-0.03, 2.5)
        plt.tight_layout()
        plt.savefig(f"figs/{model_name}_{input_type}_{threshold[0]}_{threshold[1]}_{oversampled}.png")
        plt.close()


def print_category_errors(actual, preds):
    for i in range(2):
        if i == 0:
            input_type = "BoW"
        else:
            input_type = "TF-IDF"

        preds = preds_values[i]
        actual = actual_values[i]
        mae = mae_values[i]

        print(input_type)
        actual1 = list(actual[np.where(actual < 0.98)])
        preds1 = list(preds[np.where(actual < 0.98)])
        print(f"Category 1 MAE: {mean_absolute_error(actual1, preds1):.4f}")
        print(f"Category 1 correlation: {np.corrcoef(actual1, preds1)[0][1]:.4f}")
        print()

        actual2 = list(actual[np.where((actual >= 0.98) & (actual < 1.5))])
        preds2 = list(preds[np.where((actual >= 0.98) & (actual < 1.5))])
        print(f"Category 2 MAE: {mean_absolute_error(actual2, preds2):.4f}")
        print(f"Category 2 correlation: {np.corrcoef(actual2, preds2)[0][1]:.4f}")
        print()

        actual3 = list(actual[np.where((actual >= 1.5) & (actual < 2))])
        preds3 = list(preds[np.where((actual >= 1.5) & (actual < 2))])
        print(f"Category 3 MAE: {mean_absolute_error(actual3, preds3):.4f}")
        print(f"Category 3 correlation: {np.corrcoef(actual3, preds3)[0][1]:.4f}")
        print()

        actual4 = list(actual[np.where(actual >= 2)])
        preds4 = list(preds[np.where(actual >= 2)])
        print(f"Category 4 MAE: {mean_absolute_error(actual4, preds4):.4f}")
        print(f"Category 4 correlation: {np.corrcoef(actual4, preds4)[0][1]:.4f}")
        print()
        print(f"Overall corr: {np.corrcoef(actual, preds)[0][1]:.4f}")


if __name__ == "__main__":
    filename = "linear_models/lasso_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], False)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/lin_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], False)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/sgd_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], False)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "oversampled_False_catboost_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], False)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/lasso_0.2_0.8.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.2, 0.8], False)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/oversampled_lin_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], True)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/oversampled_lasso_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], True)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/oversampled_sgd_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], True)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "oversampled_True_catboost_reg_0.01_0.99.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], True)
    print_category_errors(actual_values, preds_values)
    print("============================")

    filename = "linear_models/oversampled_lasso_0.15_0.85.txt"
    print(filename)
    preds_values, actual_values, mae_values = read_results(filename)
    #plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.15, 0.85], True)
    print_category_errors(actual_values, preds_values)
    print("============================")