🤗 Add DatasetCard
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: unknown
|
4 |
+
task_categories:
|
5 |
+
- change-detection
|
6 |
+
pretty_name: ChaBuD
|
7 |
+
tags:
|
8 |
+
- remote-sensing
|
9 |
+
- earth-observation
|
10 |
+
- geospatial
|
11 |
+
- satellite-imagery
|
12 |
+
- change-detection
|
13 |
+
- sentinel-2
|
14 |
+
---
|
15 |
+
|
16 |
+
# ChaBuD
|
17 |
+
|
18 |
+
<!-- Dataset thumbnail -->
|
19 |
+
![ChaBuD](./thumbnail.png)
|
20 |
+
|
21 |
+
<!-- Provide a quick summary of the dataset. -->
|
22 |
+
ChaBuD is a dataset for Change detection for Burned area Delineation and is used for the ChaBuD ECML-PKDD 2023 Discovery Challenge. This is the RGB version with 3 bands.
|
23 |
+
- **Paper:** https://doi.org/10.1016/j.rse.2021.112603
|
24 |
+
- **Homepage:** https://huggingface.co/spaces/competitions/ChaBuD-ECML-PKDD2023
|
25 |
+
|
26 |
+
## Description
|
27 |
+
|
28 |
+
<!-- Provide a longer summary of what this dataset is. -->
|
29 |
+
|
30 |
+
|
31 |
+
- **Total Number of Images**: 356
|
32 |
+
- **Bands**: 3 (RGB)
|
33 |
+
- **Image Size**: 512x512
|
34 |
+
- **Image Resolution**: 10m
|
35 |
+
- **Land Cover Classes**: 2
|
36 |
+
- **Classes**: no change, burned area
|
37 |
+
- **Source**: Sentinel-2
|
38 |
+
|
39 |
+
|
40 |
+
## Usage
|
41 |
+
|
42 |
+
To use this dataset, simply use `datasets.load_dataset("blanchon/ChaBuD")`.
|
43 |
+
<!-- Provide any additional information on how to use this dataset. -->
|
44 |
+
```python
|
45 |
+
from datasets import load_dataset
|
46 |
+
ChaBuD = load_dataset("blanchon/ChaBuD")
|
47 |
+
```
|
48 |
+
|
49 |
+
## Citation
|
50 |
+
|
51 |
+
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
52 |
+
If you use the ChaBuD dataset in your research, please consider citing the following publication:
|
53 |
+
|
54 |
+
|
55 |
+
```bibtex
|
56 |
+
@article{TURKOGLU2021112603,
|
57 |
+
title = {Crop mapping from image time series: Deep learning with multi-scale label hierarchies},
|
58 |
+
journal = {Remote Sensing of Environment},
|
59 |
+
volume = {264},
|
60 |
+
pages = {112603},
|
61 |
+
year = {2021},
|
62 |
+
issn = {0034-4257},
|
63 |
+
doi = {https://doi.org/10.1016/j.rse.2021.112603},
|
64 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0034425721003230},
|
65 |
+
author = {Mehmet Ozgur Turkoglu and Stefano D'Aronco and Gregor Perich and Frank Liebisch and Constantin Streit and Konrad Schindler and Jan Dirk Wegner},
|
66 |
+
keywords = {Deep learning, Recurrent neural network (RNN), Convolutional RNN, Hierarchical classification, Multi-stage, Crop classification, Multi-temporal, Time series},
|
67 |
+
}
|
68 |
+
```
|