File size: 6,825 Bytes
3156eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from torchvision.io import read_image
from torchvision.models import resnet50, ResNet50_Weights
import glob, os, csv
import numpy as np
from PIL import Image
from torchvision import models, transforms
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

# Custom Dataset Class (Replace with your actual dataset class)
class CustomDataset(torch.utils.data.Dataset):
    def __init__(self, root, transform=None):
        # Your dataset initialization code here

        self.transform = transform

        # read ui types in the csv file design_topics.csv
        dict_id_to_ui_type = {}
        with open('../enrico/design_topics.csv') as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=',')
            ui_types_set = set()
            for row in csv_reader:
                ui_types_set.add(row[1])
                if row[1] == 'news':
                    row[1] = 'gallery'
                dict_id_to_ui_type[row[0]] = row[1]

        ui_types_list = ['list', 'login', 'settings', 'menu', 'mediaplayer', 'form', 'profile', 'gallery']#list(ui_types_set)

        path = root
        folders = os.listdir(path)
        self.image_list = []
        self.ui_type_list = []

        c = 0
        for f in folders:
            c += 1

            if c % 50 == 0:
                print(c)

            image_path = path + f

            # image = read_image(image_path)
            # # resize to 1280 x 720
            # image = image.resize((720, 1280))

            # open image as numpy array
            # image = Image.open(image_path)
            # # resize the image to 1280 x 720
            # image = image.resize((720, 1280))
            # image.save(image_path)
            image = read_image(image_path).to(torch.uint8)

            self.image_list.append(image)
            
            # get the ui type of the image
           # image_name = '_'.join(f.split('_')[:2])
           
            image_id = f.split('.')[0]
            ui_type = dict_id_to_ui_type[image_id]

            ui_type_index = ui_types_list.index(ui_type)
            label = torch.zeros(8).to(device)
            label[ui_type_index] = 1
            self.ui_type_list.append(label)

    def __len__(self):
        # Return the number of samples in your dataset
        return len(self.image_list)

    def __getitem__(self, idx):
        # Load and return a sample from your dataset
        img = self.image_list[idx]

        if self.transform:
            img = self.transform(img)

        label = self.ui_type_list[idx]
        return img, label


#img = read_image("./UI_images/enrico_124.jpg")

# Step 1: Initialize model with the best available weights
#weights = ResNet50_Weights.DEFAULT
#model = resnet50(weights=weights)
weights = ResNet50_Weights.DEFAULT
resnet50 = models.resnet50(pretrained=True)
#for param in resnet50.parameters():
 #   param.requires_grad = False

num_ftrs = resnet50.fc.in_features
resnet50.fc = nn.Linear(num_ftrs, 8)
#num_features = model.fc.in_features
#model = torch.nn.Sequential(*(list(model.children())[:-1]))
#model.fc = nn.Linear(model.fc.in_features, 8)
#layer = nn.Linear(num_features, 8)
resnet50.to(device)
#layer.to(device)
#for n, p in model.named_parameters():
 #   p.require_grad = False


#img = read_image("./UI_images/enrico_124.jpg")

# Step 2: Initialize the inference transforms
#preprocess = weights.transforms()

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
preprocess = weights.transforms()

train_dataset = CustomDataset(root="./imgs/train/", 
                        transform=transforms.Compose([preprocess]))
test_dataset = CustomDataset(root="./imgs/test/", 
                        transform=transforms.Compose([preprocess]))

# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
val_loader2 = DataLoader(test_dataset, batch_size=1, shuffle=False)

# Define loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
criterion = torch.nn.BCEWithLogitsLoss()

other_p = []
fc_p = []
for name, param in resnet50.named_parameters():
    if not name.startswith('fc'):  
        other_p.append(param)
    else:
        print(name)
        fc_p.append(param)

params = [
    {'params': fc_p, 'lr': 0.001},  
    {'params': other_p, 'lr': 0.0001}  
]

optimizer = optim.Adam(params, lr=0.001)
#optimizer = optim.Adam(resnet50.parameters(), lr=0.0001)
#optimizer = optim.Adam(resnet50.fc, lr=0.001)

# Training loop
num_epochs = 501
for epoch in range(num_epochs):
    print('epoch', epoch)
    resnet50.train()
    for inputs, labels in train_loader:
        inputs = inputs.to(device)
        labels = labels.to(device)

        optimizer.zero_grad()
        outputs = resnet50(inputs)

     
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()


    # compute the accuracy of each class
    # compute the accuracy of each class
    correct = 0
    total = 0
    with torch.no_grad():
        if epoch != 0 and epoch % 5 == 0:
            
            # accuracy per class
            class_correct = list(0. for i in range(8))
            class_total = list(0. for i in range(8))
            with torch.no_grad():
            
                for inputs, labels in val_loader2:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
                
                    outputs = resnet50(inputs)
                    _, predicted = torch.max(outputs, 1)
                   # c = (predicted == labels).squeeze()
                    label_index = torch.where(labels[0] == 1)[0].item()
                    label = int(label_index)
                    c = (predicted == label).squeeze()
                    
                    class_correct[label] += c.item()
                    class_total[label] += 1
                    correct += c.item()
                    total += 1

            print('Accuracy of the netxork on the test images: %.2f %%' % (
                100 * correct / total))
            print(class_correct)
            print(class_total)
            
            for i in range(8):
                print('Accuracy of %5s : %.2f %%' % (
                    i, 100 * class_correct[i] / class_total[i]))


# Step 4: Use the model and print the predicted category
# prediction = model(128).squeeze(0).softmax(0)

# class_id = prediction.argmax().item()
# score = prediction[class_id].item()
# category_name = weights.meta["categories"][class_id]
# print(f"{category_name}: {100 * score:.1f}%")