Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
text
stringlengths
1.27k
99.6M
id
stringlengths
23
24
file_path
stringclasses
46 values
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cloning into 'ALAE'...\r\n", "remote: Enumerating objects: 7, done.\u001b[K\r\n", "remote: Counting objects: 100% (7/7), done.\u001b[K\r\n", "remote: Compressing objects: 100% (7/7), done.\u001b[K\r\n", "remote: Total 2318 (delta 2), reused 2 (delta 0), pack-reused 2311\u001b[K\r\n", "Receiving objects: 100% (2318/2318), 208.04 MiB | 13.63 MiB/s, done.\r\n", "Resolving deltas: 100% (898/898), done.\r\n", "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\r\n", "Solving environment: | \b\bfailed with initial frozen solve. Retrying with flexible solve.\r\n", "Collecting package metadata (repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\r\n", "Solving environment: \\ \b\bfailed with initial frozen solve. Retrying with flexible solve.\r\n", "\r\n", "PackagesNotFoundError: The following packages are not available from current channels:\r\n", "\r\n", " - torch\r\n", "\r\n", "Current channels:\r\n", "\r\n", " - https://conda.anaconda.org/conda-forge/linux-64\r\n", " - https://conda.anaconda.org/conda-forge/noarch\r\n", " - https://repo.anaconda.com/pkgs/main/linux-64\r\n", " - https://repo.anaconda.com/pkgs/main/noarch\r\n", " - https://repo.anaconda.com/pkgs/r/linux-64\r\n", " - https://repo.anaconda.com/pkgs/r/noarch\r\n", "\r\n", "To search for alternate channels that may provide the conda package you're\r\n", "looking for, navigate to\r\n", "\r\n", " https://anaconda.org\r\n", "\r\n", "and use the search bar at the top of the page.\r\n", "\r\n", "\r\n", "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\bdone\r\n", "Solving environment: - \b\bfailed with initial frozen solve. Retrying with flexible solve.\r\n", "Collecting package metadata (repodata.json): | \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\bdone\r\n", "Solving environment: - \b\bfailed with initial frozen solve. Retrying with flexible solve.\r\n", "\r\n", "PackagesNotFoundError: The following packages are not available from current channels:\r\n", "\r\n", " - requirements\r\n", "\r\n", "Current channels:\r\n", "\r\n", " - https://conda.anaconda.org/conda-forge/linux-64\r\n", " - https://conda.anaconda.org/conda-forge/noarch\r\n", " - https://repo.anaconda.com/pkgs/main/linux-64\r\n", " - https://repo.anaconda.com/pkgs/main/noarch\r\n", " - https://repo.anaconda.com/pkgs/r/linux-64\r\n", " - https://repo.anaconda.com/pkgs/r/noarch\r\n", "\r\n", "To search for alternate channels that may provide the conda package you're\r\n", "looking for, navigate to\r\n", "\r\n", " https://anaconda.org\r\n", "\r\n", "and use the search bar at the top of the page.\r\n", "\r\n", "\r\n" ] }, { "ename": "ModuleNotFoundError", "evalue": "No module named 'dlutils'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-d31b55aef8b6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mlauncher\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mcheckpointer\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCheckpointer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdlutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpytorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcount_parameters\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdefaults\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_cfg_defaults\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlreq\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'dlutils'" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "!git clone https://github.com/podgorskiy/ALAE.git\n", "!conda install torch \n", "\n", "import os\n", "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n", "\n", "import torch.utils.data\n", "os.chdir('/kaggle/working/ALAE')\n", "!conda install requirements\n", "from net import *\n", "from model import Model\n", "from launcher import run\n", "from checkpointer import Checkpointer\n", "from dlutils.pytorch import count_parameters\n", "from defaults import get_cfg_defaults\n", "import lreq\n", "import logging\n", "from PIL import Image\n", "import bimpy\n", "import cv2\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "lreq.use_implicit_lreq.set(True)\n", "\n", "\n", "indices = [0, 1, 2, 3, 4, 10, 11, 17, 19]\n", "\n", "labels = [\"gender\",\n", " \"smile\",\n", " \"attractive\",\n", " \"wavy-hair\",\n", " \"young\",\n", " \"big lips\",\n", " \"big nose\",\n", " \"chubby\",\n", " \"glasses\",\n", " ]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%%capture\n", "!pip install -r requirements.txt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def loadNext(index=0):\n", " img = np.asarray(Image.open(path + '/' + paths[index]))\n", " current_file.value = paths[index]\n", "\n", " if len(paths) == 0:\n", " paths.extend(paths_backup)\n", "\n", " if img.shape[2] == 4:\n", " img = img[:, :, :3]\n", " im = img.transpose((2, 0, 1))\n", " x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1.\n", " if x.shape[0] == 4:\n", " x = x[:3]\n", "\n", " needed_resolution = model.decoder.layer_to_resolution[-1]\n", " while x.shape[2] > needed_resolution:\n", " x = F.avg_pool2d(x, 2, 2)\n", " if x.shape[2] != needed_resolution:\n", " x = F.adaptive_avg_pool2d(x, (needed_resolution, needed_resolution))\n", "\n", " img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy()\n", "\n", " latents_original = encode(x[None, ...].cuda())\n", " latents = latents_original[0, 0].clone()\n", " latents -= model.dlatent_avg.buff.data[0]\n", " \n", " for v, w in zip(attribute_values, W):\n", " v.value = (latents * w).sum()\n", "\n", " for v, w in zip(attribute_values, W):\n", " latents = latents - v.value * w\n", "\n", " return latents, latents_original, img_src\n", "\n", "\n", "def loadRandom():\n", " latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE)\n", " lat = torch.tensor(latents).float().cuda()\n", " dlat = mapping_fl(lat)\n", " layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis]\n", " ones = torch.ones(layer_idx.shape, dtype=torch.float32)\n", " coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones)\n", " dlat = torch.lerp(model.dlatent_avg.buff.data, dlat, coefs)\n", " x = decode(dlat)[0]\n", " img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy()\n", " latents_original = dlat\n", " latents = latents_original[0, 0].clone()\n", " latents -= model.dlatent_avg.buff.data[0]\n", " \n", " for v, w in zip(attribute_values, W):\n", " v.value = (latents * w).sum()\n", "\n", " for v, w in zip(attribute_values, W):\n", " latents = latents - v.value * w\n", "\n", " return latents, latents_original, img_src\n", " \n", "def update_image(w, latents_original):\n", " with torch.no_grad():\n", " w = w + model.dlatent_avg.buff.data[0]\n", " w = w[None, None, ...].repeat(1, model.mapping_fl.num_layers, 1)\n", "\n", " layer_idx = torch.arange(model.mapping_fl.num_layers)[np.newaxis, :, np.newaxis]\n", " cur_layers = (7 + 1) * 2\n", " mixing_cutoff = cur_layers\n", " styles = torch.where(layer_idx < mixing_cutoff, w, latents_original)\n", "\n", " x_rec = decode(styles)\n", " resultsample = ((x_rec * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255)\n", " resultsample = resultsample.cpu()[0, :, :, :]\n", " return resultsample.type(torch.uint8).transpose(0, 2).transpose(0, 1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'get_cfg_defaults' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-4-04425c7f0851>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_default_tensor_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'torch.cuda.FloatTensor'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mcfg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_cfg_defaults\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge_from_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"./configs/ffhq.yaml\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'get_cfg_defaults' is not defined" ] } ], "source": [ "torch.cuda.set_device(0)\n", "torch.set_default_tensor_type('torch.cuda.FloatTensor')\n", "\n", "cfg = get_cfg_defaults()\n", "cfg.merge_from_file(\"./configs/ffhq.yaml\")\n", "\n", "logger = logging.getLogger(\"logger\")\n", "logger.setLevel(logging.DEBUG)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [ { "ename": "NameError", "evalue": "name 'cfg' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-5-5dcb680d04f6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m model = Model(\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mstartf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSTART_CHANNEL_COUNT\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mlayer_count\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLAYER_COUNT\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mmaxf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMAX_CHANNEL_COUNT\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mlatent_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLATENT_SPACE_SIZE\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'cfg' is not defined" ] } ], "source": [ "\n", "\n", "\n", "model = Model(\n", " startf=cfg.MODEL.START_CHANNEL_COUNT,\n", " layer_count=cfg.MODEL.LAYER_COUNT,\n", " maxf=cfg.MODEL.MAX_CHANNEL_COUNT,\n", " latent_size=cfg.MODEL.LATENT_SPACE_SIZE,\n", " truncation_psi=cfg.MODEL.TRUNCATIOM_PSI,\n", " truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF,\n", " mapping_layers=cfg.MODEL.MAPPING_LAYERS,\n", " channels=cfg.MODEL.CHANNELS,\n", " generator=cfg.MODEL.GENERATOR,\n", " encoder=cfg.MODEL.ENCODER)\n", "\n", "model.cuda()\n", "model.eval()\n", "model.requires_grad_(False)\n", "\n", "decoder = model.decoder\n", "encoder = model.encoder\n", "mapping_tl = model.mapping_tl\n", "mapping_fl = model.mapping_fl\n", "dlatent_avg = model.dlatent_avg\n", "\n", "logger.info(\"Trainable parameters generator:\")\n", "count_parameters(decoder)\n", "\n", "logger.info(\"Trainable parameters discriminator:\")\n", "count_parameters(encoder)\n", "\n", "arguments = dict()\n", "arguments[\"iteration\"] = 0\n", "\n", "model_dict = {\n", " 'discriminator_s': encoder,\n", " 'generator_s': decoder,\n", " 'mapping_tl_s': mapping_tl,\n", " 'mapping_fl_s': mapping_fl,\n", " 'dlatent_avg': dlatent_avg\n", "}\n", "\n", "checkpointer = Checkpointer(cfg,\n", " model_dict,\n", " {},\n", " logger=logger,\n", " save=False)\n", "\n", "extra_checkpoint_data = checkpointer.load()\n", "\n", "model.eval()\n", "\n", "layer_count = cfg.MODEL.LAYER_COUNT\n", "\n", "\n", "def encode(x):\n", " Z, _ = model.encode(x, layer_count - 1, 1)\n", " Z = Z.repeat(1, model.mapping_fl.num_layers, 1)\n", " # print(Z.shape)\n", " return Z\n", "\n", "\n", "def decode(x):\n", " layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis]\n", " ones = torch.ones(layer_idx.shape, dtype=torch.float32)\n", " coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones)\n", " # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs)\n", " return model.decoder(x, layer_count - 1, 1, noise=True)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'bimpy' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-6-bb05460e67bb>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mrandomize\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbimpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mcurrent_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbimpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mString\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'bimpy' is not defined" ] } ], "source": [ "path = 'dataset_samples/faces/realign1024x1024'\n", "\n", "paths = list(os.listdir(path))\n", "paths.sort()\n", "paths_backup = paths[:]\n", "\n", "\n", "randomize = bimpy.Bool(True)\n", "current_file = bimpy.String(\"\")\n", "\n", "ctx = bimpy.Context()\n", "\n", "attribute_values = [bimpy.Float(0) for i in indices]\n", "\n", "# W: 9x512\n", "W = [torch.tensor(np.load(\"principal_directions/direction_%d.npy\" % i), dtype=torch.float32) for i in indices]\n", "\n", "rnd = np.random.RandomState(5)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'cfg' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-7-e5b7171cb8ba>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mim_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;34m**\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMODEL\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLAYER_COUNT\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mseed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#image_index = 6 # image index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mslider_vals\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# simulate the slider form interactive demo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'cfg' is not defined" ] } ], "source": [ "im_size = 2 ** (cfg.MODEL.LAYER_COUNT + 1)\n", "seed = 0\n", "\n", "#image_index = 6 # image index \n", "slider_vals = np.linspace(-20, 20, 10) # simulate the slider form interactive demo\n", "\n", "for image_index in range(10):\n", " for target_attr in range(len(labels)):\n", " latents, latents_original, img_src = loadNext(image_index) \n", "\n", " fig, ax = plt.subplots(1, len(slider_vals)+1, figsize=(25, 6))\n", " fig.suptitle(f\"Variation across: {labels[target_attr]}\", y=0.7)\n", " ax[0].imshow(img_src)\n", " ax[0].set_title(\"Original image\")\n", " ax[0].axis('off')\n", "\n", " for i, val in enumerate(slider_vals):\n", " attribute_values[target_attr].value = val\n", " new_latents = latents + sum([v.value * w for v, w in zip(attribute_values, W)])\n", " new_im = update_image(new_latents, latents_original)\n", "\n", " ax[i+1].imshow(new_im)\n", " ax[i+1].set_title(round(val, 1))\n", " ax[i+1].axis('off')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
0034/558/34558168.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0034/558/34558237.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{},\"cell_type\":\"markdown\",\"source\":\"# *H2O AutoML for predicting H(...TRUNCATED)
0034/558/34558719.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0034/559/34559002.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"execution_count\": null,\n \"metadat(...TRUNCATED)
0034/559/34559571.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{},\"cell_type\":\"markdown\",\"source\":\"# Introduction\"},{\"metadata\(...TRUNCATED)
0034/559/34559978.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0034/560/34560048.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{},\"cell_type\":\"markdown\",\"source\":\"# MEI Introduction to Data Sci(...TRUNCATED)
0034/560/34560123.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0034/560/34560382.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0034/560/34560556.ipynb
s3://data-agents/kaggle-outputs/sharded/016_00034.jsonl.gz
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
27