Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
text
stringlengths
1.51k
102M
id
stringlengths
23
24
file_path
stringclasses
50 values
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['train_users_2.csv', 'countries.csv', 'test_users.csv', 'sessions.csv', 'sample_submission_NDF.csv', 'age_gender_bkts.csv', 'sample_submission.csv']\n" ] } ], "source": [ "# This Python 3 environment comes with many helpful analytics libraries installed\n", "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python\n", "# For example, here's several helpful packages to load in \n", "\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "\n", "# Input data files are available in the \"../input/\" directory.\n", "# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory\n", "\n", "import os\n", "print(os.listdir(\"../input\"))\n", "\n", "# Any results you write to the current directory are saved as output." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "_uuid": "8dcb706097d52a55242f9d17827301238d1237d1" }, "outputs": [], "source": [ "#invite people for the Kaggle party\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "from scipy.stats import norm\n", "from sklearn.preprocessing import StandardScaler\n", "from scipy import stats\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "%matplotlib inline\n", "\n", "from sklearn import preprocessing\n", "from sklearn.preprocessing import LabelEncoder" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>country</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>000am9932b</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>000am9932b</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>000c16lc82</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>000c16lc82</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>000hpr0pqh</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>000hpr0pqh</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>000o0iw8io</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>000o0iw8io</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>001h113uzc</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>001h113uzc</td>\n", " <td>US</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id country\n", "0 000am9932b NDF\n", "1 000am9932b US\n", "2 000c16lc82 NDF\n", "3 000c16lc82 US\n", "4 000hpr0pqh NDF\n", "5 000hpr0pqh US\n", "6 000o0iw8io NDF\n", "7 000o0iw8io US\n", "8 001h113uzc NDF\n", "9 001h113uzc US" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sessions = pd.read_csv('../input/sample_submission.csv')\n", "sessions.head(10)" ] }, { "cell_type": "markdown", "metadata": { "_uuid": "4f45a23b26637c58cfea97bb218898aa434a87b8" }, "source": [ "**Data Initialize**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" }, "outputs": [], "source": [ "# Load the data into DataFrames\n", "train_users = pd.read_csv('../input/train_users_2.csv')\n", "test_users = pd.read_csv('../input/test_users.csv')\n", "age_gender_bkts = pd.read_csv('../input/age_gender_bkts.csv')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "_uuid": "158767ba6f89e148ee4c5abc8bd0309529b90cfc" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>date_account_created</th>\n", " <th>timestamp_first_active</th>\n", " <th>date_first_booking</th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " <th>country_destination</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>gxn3p5htnn</td>\n", " <td>2010-06-28</td>\n", " <td>20090319043255</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>facebook</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>820tgsjxq7</td>\n", " <td>2011-05-25</td>\n", " <td>20090523174809</td>\n", " <td>NaN</td>\n", " <td>MALE</td>\n", " <td>38.0</td>\n", " <td>facebook</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>seo</td>\n", " <td>google</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " <td>NDF</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>4ft3gnwmtx</td>\n", " <td>2010-09-28</td>\n", " <td>20090609231247</td>\n", " <td>2010-08-02</td>\n", " <td>FEMALE</td>\n", " <td>56.0</td>\n", " <td>basic</td>\n", " <td>3</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>IE</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>bjjt8pjhuk</td>\n", " <td>2011-12-05</td>\n", " <td>20091031060129</td>\n", " <td>2012-09-08</td>\n", " <td>FEMALE</td>\n", " <td>42.0</td>\n", " <td>facebook</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Firefox</td>\n", " <td>other</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>87mebub9p4</td>\n", " <td>2010-09-14</td>\n", " <td>20091208061105</td>\n", " <td>2010-02-18</td>\n", " <td>-unknown-</td>\n", " <td>41.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>osr2jwljor</td>\n", " <td>2010-01-01</td>\n", " <td>20100101215619</td>\n", " <td>2010-01-02</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>other</td>\n", " <td>other</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>lsw9q7uk0j</td>\n", " <td>2010-01-02</td>\n", " <td>20100102012558</td>\n", " <td>2010-01-05</td>\n", " <td>FEMALE</td>\n", " <td>46.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>other</td>\n", " <td>craigslist</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Safari</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0d01nltbrs</td>\n", " <td>2010-01-03</td>\n", " <td>20100103191905</td>\n", " <td>2010-01-13</td>\n", " <td>FEMALE</td>\n", " <td>47.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Safari</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>a1vcnhxeij</td>\n", " <td>2010-01-04</td>\n", " <td>20100104004211</td>\n", " <td>2010-07-29</td>\n", " <td>FEMALE</td>\n", " <td>50.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>other</td>\n", " <td>craigslist</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Safari</td>\n", " <td>US</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>6uh8zyj2gn</td>\n", " <td>2010-01-04</td>\n", " <td>20100104023758</td>\n", " <td>2010-01-04</td>\n", " <td>-unknown-</td>\n", " <td>46.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>other</td>\n", " <td>craigslist</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Firefox</td>\n", " <td>US</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id ... country_destination\n", "0 gxn3p5htnn ... NDF\n", "1 820tgsjxq7 ... NDF\n", "2 4ft3gnwmtx ... US\n", "3 bjjt8pjhuk ... other\n", "4 87mebub9p4 ... US\n", "5 osr2jwljor ... US\n", "6 lsw9q7uk0j ... US\n", "7 0d01nltbrs ... US\n", "8 a1vcnhxeij ... US\n", "9 6uh8zyj2gn ... US\n", "\n", "[10 rows x 16 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_users.head(10)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "_uuid": "383cc58f6bec2ad3580d4fdc7863d6f65a96da81" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>age_bucket</th>\n", " <th>country_destination</th>\n", " <th>gender</th>\n", " <th>population_in_thousands</th>\n", " <th>year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>100+</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>1.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>95-99</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>9.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>90-94</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>47.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>85-89</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>118.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>80-84</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>199.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>75-79</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>298.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>70-74</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>415.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>65-69</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>574.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>60-64</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>636.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>55-59</td>\n", " <td>AU</td>\n", " <td>male</td>\n", " <td>714.0</td>\n", " <td>2015.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " age_bucket country_destination gender population_in_thousands year\n", "0 100+ AU male 1.0 2015.0\n", "1 95-99 AU male 9.0 2015.0\n", "2 90-94 AU male 47.0 2015.0\n", "3 85-89 AU male 118.0 2015.0\n", "4 80-84 AU male 199.0 2015.0\n", "5 75-79 AU male 298.0 2015.0\n", "6 70-74 AU male 415.0 2015.0\n", "7 65-69 AU male 574.0 2015.0\n", "8 60-64 AU male 636.0 2015.0\n", "9 55-59 AU male 714.0 2015.0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "age_gender_bkts.head(10)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df_train = train_users.copy()\n", "df_test = test_users.copy()" ] }, { "cell_type": "markdown", "metadata": { "_kg_hide-input": false }, "source": [ "2.Data Cleaning\n", "=============" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2.1.Missing Data\n", "-----------" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "_uuid": "4640fa872c1bf32173641344409586297b2e2091" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Total</th>\n", " <th>Percent</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>date_first_booking</th>\n", " <td>124543</td>\n", " <td>0.583473</td>\n", " </tr>\n", " <tr>\n", " <th>age</th>\n", " <td>87990</td>\n", " <td>0.412226</td>\n", " </tr>\n", " <tr>\n", " <th>first_affiliate_tracked</th>\n", " <td>6065</td>\n", " <td>0.028414</td>\n", " </tr>\n", " <tr>\n", " <th>country_destination</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>first_browser</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>first_device_type</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_app</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>affiliate_provider</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>affiliate_channel</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>language</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_flow</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_method</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>gender</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>timestamp_first_active</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>date_account_created</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>id</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Total Percent\n", "date_first_booking 124543 0.583473\n", "age 87990 0.412226\n", "first_affiliate_tracked 6065 0.028414\n", "country_destination 0 0.000000\n", "first_browser 0 0.000000\n", "first_device_type 0 0.000000\n", "signup_app 0 0.000000\n", "affiliate_provider 0 0.000000\n", "affiliate_channel 0 0.000000\n", "language 0 0.000000\n", "signup_flow 0 0.000000\n", "signup_method 0 0.000000\n", "gender 0 0.000000\n", "timestamp_first_active 0 0.000000\n", "date_account_created 0 0.000000\n", "id 0 0.000000" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#missing data\n", "total = df_train.isnull().sum().sort_values(ascending=False)\n", "percent = (df_train.isnull().sum()/df_train.isnull().count()).sort_values(ascending=False)\n", "missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])\n", "missing_data.head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Age**" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "_uuid": "9b13c6b578128582eec0b9fdbb46fb42efc5e34f" }, "outputs": [ { "data": { "text/plain": [ "count 125461.000000\n", "mean 49.668335\n", "std 155.666612\n", "min 1.000000\n", "25% 28.000000\n", "50% 34.000000\n", "75% 43.000000\n", "max 2014.000000\n", "Name: age, dtype: float64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#descriptive statistics summary\n", "df_train['age'].describe()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "_uuid": "4bb633155209b0cd3093d686961d404a39cf2a78" }, "outputs": [], "source": [ "df_train = df_train[df_train['age'] <= 100]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "_uuid": "532a69756f7622f64a3a1563d99d01b6753bd3b0" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xmcm9V97/HPT9JIs894Ni9jmxkvGMxiAwZDgAAhCyQBJw00JGlLXyWlaULS27S3l9y2uQltepu0tyS5kN7QkISQmCUkpE6gIQsQdoMXDBjv23jGY8++r5LO/UMaMx5mPLItzaPl+3695mXp0ZH0kx/7qzPnOc95zDmHiIjkBp/XBYiIyMxR6IuI5BCFvohIDlHoi4jkEIW+iEgOUeiLiOQQhb6ISA5R6IuI5BCFvohIDgl4XcBEVVVVrq6uzusyREQyysaNG9ucc9XTtUu70K+rq2PDhg1elyEiklHM7EAi7TS8IyKSQxT6IiI5RKEvIpJDFPoiIjlEoS8ikkMU+iIiOSSh0Deza8xsh5ntNrPbJ3k8ZGYPxR9fb2Z18e11ZjZoZq/Gf/5fcssXEZETMe08fTPzA3cD7wEagVfMbJ1z7s1xzW4BOp1zS8zsJuCrwEfjj+1xzq1Mct2ShpxzmJnXZYjIcSTS078I2O2c2+ucGwEeBNZMaLMGuC9++xHgatP//pzy0CsNrLzj1xzuHvK6FBE5jkRCvxY4OO5+Y3zbpG2cc2GgG6iMP1ZvZpvN7Hdmdvkp1itp6Pndbfzto2/QPTjKMztbvS5HRI4jkdCfrMfuEmzTDCx0zp0HfB5Ya2alb3sDs1vNbIOZbWhtVWhkkj2tffz5DzeyqLqIyqIgL+xp87okETmORNbeaQQWjLs/Hzg0RZtGMwsAZUCHc84BwwDOuY1mtgc4HThmcR3n3D3APQCrVq2a+IUiaWbt+oajt//j2b2Eo47rV9Sy40gvL+xp19i+SBpLpKf/CrDUzOrNLAjcBKyb0GYdcHP89g3Ak845Z2bV8QPBmNkiYCmwNzmli9d6h0bZ39bPxYsqqSgK8o7FlbT0DrO3rd/r0kRkCtP29J1zYTO7DXgC8APfdc5tNbM7gA3OuXXAvcD9ZrYb6CD2xQDwTuAOMwsDEeBTzrmOVHwQmXnbm3txwFnzYiN271gcO4zzwp52FlcXe1iZiEwloaWVnXOPA49P2PbFcbeHgBsned5PgJ+cYo2SprY2dzOrMI85pfkALKwopLa8gBf3tPGHF5/mcXUiMhmdkSsnZWg0wp6Wfs6aV3Z0/P6Blw8yuzSfp3e08sOXDhwz9i8i6UGhLydlx+FeIs6xfO6xk7EWVxcxMBLhSI/m64ukI4W+nJStzT0UhQIsrCw8Zvui+Fj+npY+L8oSkWmk3eUSJX1MNTwzGomy80gvK+aX4ZswNbOsII+ygjwO6cxckbSknr6csPV72xkJR1mxoHzSx2tKQrRoeEckLSn05YQMjkR4akcrp88uZlHV5NMya0pCtPQOE3U6z04k3Sj05YQ8vbOFodEI7ztrzpRtakrzCUcdXQOjM1iZiCRCoS8J6xwY4cU97Zy3cBZzywqmbFdTEgLQEI9IGtKBXEnI7pY+Ht3cCMC7z6w5btuaktjJWi29wymvS0ROjEJfjss5xy9eb+bFPe1UFQe55bJ6yguDx31OQdBPSX6All719EXSjUJfjuvVg128uKed1fUVvP+cueT5ExsRHDuYKyLpRWP6MqWeoVF+/tohTqso5LoV8xIOfIgN8bT0DOM0g0ckrSj0ZVLOOX62uYlwxPGR8+e/7SSs6dSUhhiJRHWSlkiaUejLpJ7b3cb2w728d/lsquKzcU7E2MHcXUd6k12aiJwChb5MatOBLgy4sL7ipJ4/Nm1zt9bgEUkrCn2Z1I4jPVQUBQkF/Cf1/KJQgKKgX6EvkmYU+jKp7c29zCnLP6XXqCnNZ5dCXyStKPTlbQZHIuxr7z96RayTVVMSYueRXs3gEUkjCn15m1hQc8o9/XllBfQOhTnQPpCkykTkVCn05W22H+4BOOWefu2s2Po8rzV1n3JNIpIcCn15m23NvRQG/cwqOv5yC9OZXZpPMODj9cauJFUmIqdKoS9vs/1wD8vmlJzwCVkT+X3G8rmlbGlUT18kXWjtHTmGc47th3u59uy5SXm9/Dwfmxq6+OFLB475Evn46oVJeX0ROTHq6csxjvQM0zUwyplzS5LyevPLCxkJR2nT4msiaUGhL8fYFj+Ie8ac0qS83tjB3MauwaS8noicGoW+HGN7c2ytnGVzktPTry4JEfT7aOpU6IukA4W+HGP74R5qywsoK8hLyuv5zJhXnk+TevoiaUGhL8do6Bigrqowqa9ZW17Aoa5BIlGdmSviNYW+HKO1d/jossjJUjurkHDU6fKJImlAoS9HOedo6R2m+iTWzz+ehRWx3xz2tfUn9XVF5MQp9OWonqEwI+Ho0bXwk6WiKEhVcYjth3VBFRGvKfTlqNb48Euye/oAy+eWsK+1n6HRSNJfW0QSl1Dom9k1ZrbDzHab2e2TPB4ys4fij683s7oJjy80sz4z++vklC2p0BI/gSoVoX/m3FIizrFTl08U8dS0oW9mfuBu4FpgOfAxM1s+odktQKdzbglwJ/DVCY/fCfzXqZcrqdQaD/1kD+8ALKgopCjo583mnqS/togkLpGe/kXAbufcXufcCPAgsGZCmzXAffHbjwBXm8UWWjGzDwF7ga3JKVlSpfVoTz+5s3cgNl//jDml7DzSq6mbIh5KJPRrgYPj7jfGt03axjkXBrqBSjMrAv4H8OVTL1VSraV3mGDAR2l+atbhO3NuKUOjUc3iEfFQIqE/2fq6E7tqU7X5MnCnc+64F0o1s1vNbIOZbWhtbU2gJEmF2Bz9EHaKSypPZUlNMQGfsU1DPCKeSaRL1wgsGHd/PnBoijaNZhYAyoAOYDVwg5l9DSgHomY25Jy7a/yTnXP3APcArFq1Sr/7e6SldyglB3HHBAM+ls4uYeuhbiJRh9+Xmi8XEZlaIj39V4ClZlZvZkHgJmDdhDbrgJvjt28AnnQxlzvn6pxzdcDXgX+aGPiSPsZ6+qm0ckE5PUNhXtzTntL3EZHJTRv68TH624AngG3Aw865rWZ2h5ldH292L7Ex/N3A54G3TeuU9JeKs3EnOmNOCaGAj0c3N6X0fURkcgkdsXPOPQ48PmHbF8fdHgJunOY1vnQS9ckMWLu+gXAkStfAKIe7h1i7viFl75Xn93FObRm/fKOZf/zQ2RQE/Sl7LxF5O52RKwD0DYcBKAklZ0nl41m5sJz+kQi/evNwyt9LRI6l0BcAeofioZ+i6Zrj1VUWUVtewM80xCMy4xT6ArwV+sUzEPo+M9asnMczu9ro6B9J+fuJyFsU+gJA7/AoACX5qR/eAbjqjBoiUcemA50z8n4iEqPQFwD6hsIYUBxKfU8f4Ox5ZQR8xuaDCn2RmaTQFyA2vFMY9M/YCVMFQT9nzC3h1YNdM/J+IhKj0BcAeofDMza0M+a8BbPYcrBbC7CJzCCFvgDQOzQ6IzN3xlu5oJy+4TB7Wo+7NJOIJJFCX4DYmP5MjeePWbmwHIDNDRrXF5kpM/u/XNKSc27Gh3fWrm8g6hwFeX4e2dhIJBrb/vHVC2esBpFcpJ6+MDgaIRJ1Mz684zNj/qwCDnYMzuj7iuQyhb7QN3Zi1gwP70DsMopHeoYYDuuC6SIzQaEv9I3M3Nm4Ey2YVYgDmjrV2xeZCQp9oX841ssuCnoR+gUAHOwYmPH3FslFCn2hP77CZlFo5pc5LgwFKCvIoyV+UXYRSS2FvtA3HFuCodCDnj5AZVGQtj6FvshMUOgL/cNhCmZwCYaJqopDtGu1TZEZodAX+obDFHkwc2dMZXGQgZEIA/EDyiKSOgp9oX844sl0zTFVxbHr8rb3qbcvkmoKfaE/DXr6gMb1RWaAQl9iwzseXqC8oiiIAW3q6YuknEI/x4UjUQZHvR3eCfh8lBfm0d6vnr5Iqin0c1zHQKx37eXwDsRn8KinL5JyCv0cNxa0Xvb0ASqLQ7T1DeOcLqgikkoK/RzX0Z8uPf0gw+GoxvVFUkyhn+PGZsx4sQTDeGPTNve393tah0i2U+jnuLQZ3imKTdvc16bQF0klhX6Oa+8fxmeQn+dtT7+8MIjPFPoiqabQz3Ed/SMUBQP4zJt1d8b4fUZFUYj9Cn2RlFLo57i2vhHPD+KOqSoOqqcvkmIK/RzX3jfs+UHcMVXFIfa39xONatqmSKoo9HNcR3/69PSri0MMjUZp6tKlE0VSJaHQN7NrzGyHme02s9sneTxkZg/FH19vZnXx7ReZ2avxny1m9uHkli+nqr1vxPOZO2OqS2LTNne39nlciUj2mjb0zcwP3A1cCywHPmZmyyc0uwXodM4tAe4Evhrf/gawyjm3ErgG+LaZpUfCCEOjEXqHw2kT+jXx0N/TotAXSZVEevoXAbudc3udcyPAg8CaCW3WAPfFbz8CXG1m5pwbcM6NXRkjH9BgbRo5ejauR5dJnKgwFKCyKMhuhb5IyiQS+rXAwXH3G+PbJm0TD/luoBLAzFab2VbgdeBT474ExGPpsgTDeIurixX6IimUSOhPNoF7Yo99yjbOufXOubOAC4EvmFn+297A7FYz22BmG1pbWxMoSZJhbAmG4jSZvQOwuKaYPRrTF0mZREK/EVgw7v584NBUbeJj9mVAx/gGzrltQD9w9sQ3cM7d45xb5ZxbVV1dnXj1ckrGlmBIp57+kppiOgdGaddVtERSIpHQfwVYamb1ZhYEbgLWTWizDrg5fvsG4EnnnIs/JwBgZqcBy4D9SalcTlk6Du8sqSkG0BCPSIpMG/rxMfjbgCeAbcDDzrmtZnaHmV0fb3YvUGlmu4HPA2PTOi8DtpjZq8CjwKedc23J/hByctr6hgkGfIQC6XO6xuLqIkDTNkVSJaEunnPuceDxCdu+OO72EHDjJM+7H7j/FGuUFGnpHaamJIR5vO7OeE/vaCXPbzz2WjMWP1T08dULPa5KJHukTxdPZtyRniFml77tuLqnfGZUl4Ro7dWYvkgqKPRz2FhPP93UlOQr9EVSRKGfw1p6htIy9KtLQnQNjjIcjnhdikjWUejnqKHRCD1DYWrSbHgHYguvAbT16nq5Ismm0M9RLT2x4ZN07OnXlMZqau7WapsiyabQz1EtvUMAadnTryoOUZDn50D7gNeliGQdhX6OOpLGPX2fGXWVhexv11W0RJJNoZ+jjvb00zD0AeqqimjvH6F3aNTrUkSyikI/R7X0DpPnN2YVBr0uZVJ1lbEzc/driEckqRT6OaqlZ5jq4hA+X/qcjTvevPIC8vymIR6RJFPo56iW3iGq0/Ag7hi/z1gwq5ADCn2RpFLo56iWnvQ8G3e8uqoimruGNK4vkkQK/RzV0jvE7NI0D/3KIhywqaHL61JEsoZCPwcNhyN0DoxSU5K+wzsACyoK8Bm8sq9j+sYikhCFfg4aW8ws3Yd3QgE/teUFPLNLl9AUSRaFfg5qGQv9NB/eATh3fjmvNXaz43Cv16WIZAWFfg56a92d9B7eAVi5oJw8v/HwhoNelyKSFRT6OeitdXfSv6dfFArwnuWzeXRzEyPhqNfliGQ8hX4OaukZxmdQWZT+oQ9w46oFdPSP8OT2I16XIpLxFPo5qKV3iOqSEP40PRt3oncurWZOaT4Pb2j0uhSRjKfQz0FHeoYzYjx/jN9nfOSCWp7e0UKD1uIROSUK/RyUrtfGncra9Q2UhPLw+4zPrN3E2vUNrF3f4HVZIhlJoZ+DWnqGMuIg7nilBXlctqSa15u6Odih3r7IyVLo55j7XthPe/8Irb0jGddjfufSKopDAR5/oxnnnNfliGQkhX6O6R6ILV5WXpjncSUnLpTn5+ozazjQPsC25h6vyxHJSAr9HNM1mLmhD7DqtAoqioI8v6fd61JEMpJCP8d0DYwAUF6QnlfMmo7fZ1xYV8G+tn72tPZ5XY5IxlHo55iuwVEMKC0IeF3KSTt/YTk+gwdfzpzjESLpQqGfY7oGRinJDxDwZe6uL8nPY/ncUh7Z2MhwOOJ1OSIZJXP/58tJ6RocoTxNL4Z+Ii6sr6BzYJQntmppBpETodDPMV0Do5QVZOZB3PEWVxezoKKABzJoyqlIOlDo55Bo1NE9OMqsDJ25M57PjA+fN5/1+9qPHpwWkekp9HNIW/8wkaijLAuGdwCuOL2aqIMXNH1TJGEJhb6ZXWNmO8xst5ndPsnjITN7KP74ejOri29/j5ltNLPX43++K7nly4lo6hwEoDwLhncAVswvoyQ/wLO6nKJIwqYNfTPzA3cD1wLLgY+Z2fIJzW4BOp1zS4A7ga/Gt7cB1znnzgFuBu5PVuFy4g51xS6ekqknZk0U8Pu4dHEVz+xs07IMIglKpKd/EbDbObfXOTcCPAismdBmDXBf/PYjwNVmZs65zc65Q/HtW4F8M8uslb6yyKGusZ5+dgzvAFx+ehVNXYPsa+v3uhSRjJBI6NcC4y9Q2hjfNmkb51wY6AYqJ7T5CLDZOTc88Q3M7FYz22BmG1pb9at6qjR1DRIK+MjPy55DOe9cWg3As7vaPK5EJDMk8r9/sssrTfxd+rhtzOwsYkM+fzbZGzjn7nHOrXLOraqurk6gJDkZTV2DlBfmYZYZV8xKxIKKQuoqC3lmpzoLIolI5Fz8RmDBuPvzgUNTtGk0swBQBnQAmNl84FHgj5xze065Yjlph7oGs2poZ2xZ6Nml+Ty7q40fvLifgM/Hx1cv9LYwkTSWSE//FWCpmdWbWRC4CVg3oc06YgdqAW4AnnTOOTMrBx4DvuCcez5ZRcvJGevpZ5ulNSWMRKIc0KUURaY1bejHx+hvA54AtgEPO+e2mtkdZnZ9vNm9QKWZ7QY+D4xN67wNWAL8vZm9Gv+pSfqnkGn1D4fpGhjNmuma4y2uKSLgM7Ye0hr7ItNJaKlF59zjwOMTtn1x3O0h4MZJnvePwD+eYo2SBM3dsZk72XJi1nihgJ9lc0rY2tTNB8+d63U5Imkte6ZxyHE1ZtmJWROdO7+c3uEw+zV1U+S4FPo54mA89GcVZV9PH2DZ7BLy/MZrTd1elyKS1hT6OaKxY4BgwEdJfuZePOV4ggEfZ8wpZWtTN+FI1OtyRNKWQj9HHOwcYP6sAnxZNEd/onNqy+gfifDS3g6vSxFJWwr9HNHQMcCCWYVel5FSy+aUEPT7eODlBq3FIzIFhX6OONgxyIKKAq/LSKk8v49Ll1Tx2OvN3PmbXV6XI5KWsnOAV47RPThK9+AoCyuyu6cP8O4za+gZGuWbv93F641dFAYDtPQOE/Ab71pWwzuWVHLWvDKvyxTxjEI/BxzsiJ2pumBWIZ0Dox5Xk1pmxodW1jI4EuGpHbH1eAqDfsIRx4t72snP8/HUX1/J3LLs/q1HZCoK/RzQ2BkP/YpCOgeyf0qj32d87KKFHO4eoqwwj+JQAOccqxdV8v5vPMudv97J125Y4XWZIp5Q6OeAho63Qv+1xuwPfYgFf+2st3rzZsbL+zq4qL6CH29oZE5pAXPK8rU4m+QcHcjNAQc7BinND1CWpWfjnogrl1UTyvPxy63NXpci4gmFfg5o6BhgYWX2H8RNRGEwwFXLath5pI8D7VqyQXKPQj8HHOzM/jn6J2J1fSUBn7ElR4a6RMZT6Ge5aNTR2DmYE9M1ExUM+Dh9dglvHuomGtVJXJJbFPpZrqV3mJFwlPkK/WOcNa+UnqEwWxq7vC5FZEYp9LPcwfh0TfX0j3XGnFJ8Br/cetjrUkRmlEI/yzW0j52YpZORxisI+llcXcwTbxzWOj2SUxT6We5g5wBmHDNnXWKWzytlf/sAO4/0eV2KyIxR6Ge5gx2DzCnNJxTwe11K2lk+txQz+K83NGdfcodCP8s1dPSzQOP5kyrJz+PC0yr4+ZZDGuKRnKHQz3L72vpZVFXkdRlpa81589jT2s8bTT1elyIyIxT6WaxnaJS2vhHqFPpT+uA58wj6fTy6ucnrUkRmhEI/i+1viy0zUFep0J9KWWEe7zqjhnVbDunaupITFPpZbF889BdVK/SP58Pn19LWN8xzu9u8LkUk5bS0chbb19aPmU7MOp616xsIR6IU5Pm589c7OdQ1BKAllyVrqaefxfa39TOvrID8PE3XPJ6A38c588t4s7mHvuGw1+WIpJRCP4vta+unXgdxE/KORZVEo/DYa4e8LkUkpRT6Wco5p9A/ATWl+Vy5rJotjd1sP6zpm5K9FPpZqqN/hJ6hsKZrnoArllVTUxLiP189RO9Qdl9AXnKXDuRmqf3xq0LpxKzEBXw+fu/8+Xz7d3t459eeYs3KWi5eVEHXwCiDoxHWrKyloijodZkip0Shn6X2tsbn6Cv0T8jCikJuubye5q4h1q5v4Psv7D/62F1P7uZL15/FB8+di5l5V6TIKVDoZ6nHXmvGZ/DcrjZe3NPudTkZZVFVMYuqijlvYTmdA6MUBf0MjET42atNfPaBzWxq6OR/XXeW12WKnJSExvTN7Boz22Fmu83s9kkeD5nZQ/HH15tZXXx7pZk9ZWZ9ZnZXckuX42nrG2ZWYRC/Tz3Sk1UYDFBbXkB5YZB55QV86orF/MHFC/ne8/t5QSdySYaaNvTNzA/cDVwLLAc+ZmbLJzS7Beh0zi0B7gS+Gt8+BPw98NdJq1gS0t4/QlVxyOsysorPjL/7wHLqKgu5/aevMzCiOf2SeRLp6V8E7HbO7XXOjQAPAmsmtFkD3Be//QhwtZmZc67fOfccsfCXGeKco61vmKpiHXRMtp9uauI9y+fQ0DHArT/YyNr1DV6XJHJCEgn9WuDguPuN8W2TtnHOhYFuoDIZBcqJO9Q9xGjEUamefkrUVxWxur6C53e3cbBjwOtyRE5IIqE/2aDwxCtOJNJm6jcwu9XMNpjZhtbW1kSfJlPY3NAJwIJZWnMnVd531hxKC/L4yaZGhsMRr8sRSVgiod8ILBh3fz4w8Vz1o23MLACUAR2JFuGcu8c5t8o5t6q6ujrRp8kUNh7oJM9vzCnL97qUrJWf5+dDK+fR0jvM3U/t8bockYQlEvqvAEvNrN7MgsBNwLoJbdYBN8dv3wA86XT9Oc9sOtDJ/FmFmrmTYsvmlLJyQTnfemo3bzR1e12OSEKmDf34GP1twBPANuBh59xWM7vDzK6PN7sXqDSz3cDngaPTOs1sP/BvwB+bWeMkM38kiQZHImw91KPllGfIB86ZS1VxiE98Zz2b4sNqIuksoZOznHOPA49P2PbFcbeHgBuneG7dKdQnJ+i1xi7CUcdpCv0ZURQK8ONPXcIf3LueT/zHev71xhW896zZ5Pm1rJWkJ52Rm2U2jh3EVejPmGd3tfHxixby/Rf285m1m8jP87GkpoRrz57DkppiLq6vpKwwz+syRQCFftbZdKCTRdVFFIW0a2dSSX4en7piMbuO9LL9cC+7Wvr4lyd2AFBRFOTLWrNH0oSSIYs459jU0MXVZ9R4XUpOyvP7WD6vjOXzygC4bsVcth7q4X8/vo3PPrCZx15r5s6PrqQgqCuZiXc08JhF9rcP0NE/wgWnzfK6FAF+vqWZva393HDBAt531hye2HqY6+96jqFRzesX7yj0s8iG/bFTIxT66cXvM644vZrfO7+WXS19fPpHmxgJR70uS3KUQj9LjEaifOfZfdSWF7C4utjrcmQSF5xWwZqV83hyewuf/MEGLdgmntCYfpa474X97DjSy7f/8AJ8Oikrba2ur8Rnxs82N/G+O5/h5kvqKIwfdP/46oUeVye5QD39LHCkZ4g7f72Tq5ZV897ls70uR6ZxYV0Fn1i9kObuIe56OnY2r05gl5minn6GW7u+gQdebmA4HOX8hbN44OWD0z9JPLd8XhmfvCzAo682sfblBhZVFREM+Lh8abXWTJKUUuhnuA37O3i9qZv3LJ+tpZQzzMLKIm67aikv72vn6Z2t/PdHXgPgnNoyrl8xj+tWzNMXgCSdpduvlatWrXIbNmzwuoyMsK25h+v+73PUVRbxx5fW4dOJPxnLOcfhniF2HunjjaZumroGCfiMf7nxXD583nyvy5MMYGYbnXOrpmunnn6G6hsO8+kfbaIg6Of3L1ygwM9wZsbcsgLmlhVwxenVtPUO8+irTfzlQ1vY3tzL31xzhlZNlaRQ6Geon25qZF9bP7dcVk+xllzIOlUlIf7k0np2Hunl28/spalrkK9/dCUBLeQmp0hpkaHWvXqIM+aUaE5+FvP7jH/40NnUzirgn/9rO87B129aqRU85ZToX08GauwcYMOBTq5bMc/rUiTF1q5voDQ/j2vPnsNjrzfzwW8+xz3P7PW6LMlgCv0M9PMtzQBcr9DPGZcvreb6FfPY3drHN367i1++cVhz++WkaHgnA63bcojzFpZrzfwcc/GiSuoqi3hk40E+9cONzC3L591nzub808pZWFHIoqpiZhUFvS5T0pxCP8PsOtLLtuYevnSdrjqZi+aU5fPnVy5hS2MXbx7q4cFXGrj/pQMAGHBRfQUfPHcuH7lgPoVB/feWt9O/igyzbsshfAYfOFdDO7nK7zPOXziL8xfOIhyJ0tE/QufACAc7B2noGODv/3Mr9790gG994gKW1OhAvxxLY/oZ5ldbj7C6vpLqEp19KxDw+6gpzWfZnFLefeZsfvP5K/jBn1xEW98Ia+56jp9vOeR1iZJmFPoZpKlrkB1Hern6TF0ZSya3dn0DjZ2D/Onli6gsDvHZBzbzpXVbtX6/HKXQzyBPbm8B4CpdDlGmUVaQx59evohLF1fy/Rf28/vffpFdR3q9LkvSgEI/gzy1vYXTKgtZVFXkdSmSAfw+4wPnzuNbnziffW39XPuNZ/nKY2/SOzTqdWniIR3IzRD3vbCfZ3e1suq0Ci2fLCeka2CUz1y1hF+/eZjvPLuPH61v4J1Lq3WR9hylnn6G2Nvax2jEsWxOidelSAYqDgX48Hnz+fSVS5g/q4Bfbj3M5V97iu89v08Xas8xCv0Msf1wL3l+o15DO3IKamcV8MfvqOfP3rmIJTVFfPnnb3LVvz7N2vUNjEZ0sDcXKPQzgHOOnUc2srXSAAAKVElEQVR6WVJdrMW2JClOqyziwVsvYe0nVzO3LJ//+ejrXP1/fsdPNjYSiWp5h2ymBMkAmxo66RwY5Yy5pV6XIllk7foG9rcP8JHz53PzJacRjkT5qx9v4b13/o6fbzlEVOGflRT6GeA7z+6jIM/PivnlXpciWcjMWDanlM9ctYRPrF6I32d89oHNvP+bz/KrrVrYLdto9k6aO9gxwBNbD3P50mqCAX1HS+qYGWfNK+OONWfzi9cO8fXf7OLW+zcyryyfK5bVcOWyai5dUqWL9mQ47b00973n9+Mz4+JFlV6XIjnioVdiU4L/5NJ6Xm/qYuuhHn66qZEHXm4gz2+sOq2Cy5ZWcfGiSs6dX6bjTBlGoZ/GeoZGeeiVBj547lzKCvK8LkdyjN9nrFwwi5ULZhGORmloH2DnkV52Hunjxb3tABQF/VxYX8Eliyq5ZHElZ80r07V801xCoW9m1wDfAPzAd5xz/zzh8RDwA+ACoB34qHNuf/yxLwC3ABHgc865J5JWfRaLRB1f+cU2+kci3HLZIl5v6va6JMlhAZ+PRdXFLKou5pqzoW84zL62fvw+eHFPO0/vaAWgJD/A6vrYF8D5C8uZW1ZAVXFQ1/ZNI9OGvpn5gbuB9wCNwCtmts459+a4ZrcAnc65JWZ2E/BV4KNmthy4CTgLmAf8xsxOd87pbJDjGBqN8PmHX+Xx1w/z51cu5pz5ZQp9SSvFoQDn1JYBsHxuGT1Do+xr7WdvWx+bGzr5zbYjR9uaQWVRiNmlISqLQ5QV5FFekBf7szCPquIQs0vzmVOWz+zSkK4DkGKJ/O1eBOx2zu0FMLMHgTXA+NBfA3wpfvsR4C4zs/j2B51zw8A+M9sdf70Xk1P+9JxzRB1EnSMSdTgHEeeIRBzhaJRI1BGOOgZHI/QNhekbjv+Muw1QXRKiujgU+7MkRFEoQJ7fyPP58J3Ar7POxWpwY7eBwdEInf0jNHUN8uKedp7YepidR/r4uw+cyScvX5SavxiRJCrNz2PFgnJWLIjNMOsaGKG5e4ieoVF6h8L0Do3SMxhmb2sfgyMRBkYiDI1GmGxeUEkoQFEoQCjPR37AT36ej2DAh2E4Yv9/4K3/Q2O3AfJ8PvKDfgrz/BQG/RQEx/4MEBo3EcLi/2UNG3c79joDIxF6BkdjP0OjdA+O0jkwStfACOGoIxTwUZDnp7wwSEXRWz9FwcDR1xp7vTF+v8W/7IKUF8a+8Ma+9IpDAcxmbkgskdCvBcYv9tIIrJ6qjXMubGbdQGV8+0sTnlt70tUex+uN3Xz0nhePCfaoe+sfSCoFfEbAH9tpY4FO/ItmfLgnUovfZ9SWF/DxixZSGAywdn1DCisXSY3ywiDlhce/dGPUOYZHo/QOx74QYl8Mo/QMhxkNRxmNRBmNxDpkvUOxzhd2zB8Ydsy2cNQxGokyEn/+SDjKSPx1EmVAKC8W7Pnxn8Kgn/qqYvw+CEccI5Eo/cNhWnqG6B+J0D8cJnyS5zX4LDZ85vPB+8+Zy7/9/sqTep1EJRL6k30FTfx0U7VJ5LmY2a3ArfG7fWa2I4G6TlQV0JaC1026vcCzJ//0jPmcpyAXPiPoc2abaT/nDuDOj57065+WSKNEQr8RWDDu/nxg4uV4xto0mlkAKAM6Enwuzrl7gHsSKfhkmdkG59yqVL5HOsiFz5kLnxH0ObNNunzORA6pvwIsNbN6MwsSOzC7bkKbdcDN8ds3AE+62GDbOuAmMwuZWT2wFHg5OaWLiMiJmranHx+jvw14gtiUze8657aa2R3ABufcOuBe4P74gdoOYl8MxNs9TOygbxj4jGbuiIh4J6G5Uc65x4HHJ2z74rjbQ8CNUzz3K8BXTqHGZEnp8FEayYXPmQufEfQ5s01afE7TYkoiIrlDp8mJiOSQrA99M7vGzHaY2W4zu93repLFzBaY2VNmts3MtprZX8S3V5jZr81sV/zPWV7Xmgxm5jezzWb2i/j9ejNbH/+cD8UnGWQ0Mys3s0fMbHt8v16SbfvTzP4y/u/1DTN7wMzys2Ffmtl3zazFzN4Yt23SfWcx34xn0mtmdv5M1prVoT9uCYlrgeXAx+JLQ2SDMPBXzrkzgYuBz8Q/2+3Ab51zS4Hfxu9ng78Ato27/1Xgzvjn7CS2FEim+wbwS+fcGcAKYp83a/anmdUCnwNWOefOJjYxZGzZlkzfl98Hrpmwbap9dy2xmYxLiZ2f9O8zVCOQ5aHPuCUknHMjwNgSEhnPOdfsnNsUv91LLCBqiX2+++LN7gM+5E2FyWNm84EPAN+J3zfgXcSW/IAs+JxmVgq8k9hMOJxzI865LrJvfwaAgvj5PIVAM1mwL51zzxCbuTjeVPtuDfADF/MSUG5mc2em0uwP/cmWkEjJMhBeMrM64DxgPTDbOdcMsS8GoMa7ypLm68DfAGNX7q4Eupxz8XPzs2K/LgJage/Fh7G+Y2ZFZNH+dM41Af8KNBAL+25gI9m3L8dMte88zaVsD/2EloHIZGZWDPwE+G/OuR6v60k2M/sg0OKc2zh+8yRNM32/BoDzgX93zp0H9JPBQzmTiY9prwHqia26W0RsqGOiTN+X0/H032+2h35Cy0BkKjPLIxb4P3LO/TS++cjYr4rxP1u8qi9JLgWuN7P9xIbn3kWs518eHyKA7NivjUCjc259/P4jxL4Esml/vhvY55xrdc6NAj8F3kH27csxU+07T3Mp20M/kSUkMlJ8XPteYJtz7t/GPTR+SYybgf+c6dqSyTn3BefcfOdcHbH996Rz7hPAU8SW/IDs+JyHgYNmtiy+6WpiZ7Jn0/5sAC42s8L4v9+xz5hV+3KcqfbdOuCP4rN4Lga6x4aBZkRsfffs/QHeD+wE9gB/63U9SfxclxH7lfA14NX4z/uJjXf/FtgV/7PC61qT+JmvBH4Rv72I2DpOu4EfAyGv60vC51sJbIjv058Bs7JtfwJfBrYDbwD3A6Fs2JfAA8SOU4wS68nfMtW+Iza8c3c8k14nNptpxmrVGbkiIjkk24d3RERkHIW+iEgOUeiLiOQQhb6ISA5R6IuI5BCFvohIDlHoi4jkEIW+yDhm9jMz2xhf8/3W+LZbzGynmT1tZv9hZnfFt1eb2U/M7JX4z6XeVi8yPZ2cJTKOmVU45zrMrIDYMh7vA54ntg5OL/AksMU5d5uZrQW+5Zx7zswWAk+42PUNRNJWQhdGF8khnzOzD8dvLwD+EPidc64DwMx+DJwef/zdwPLYMjIAlJpZiYtd30AkLSn0ReLM7EpiQX6Jc27AzJ4GdgBT9d598baDM1OhyKnTmL7IW8qAznjgn0HsMpSFwBVmNiu+/O9HxrX/FXDb2B0zWzmj1YqcBIW+yFt+CQTM7DXgH4CXgCbgn4hdlew3xJYC7o63/xywKn5x6zeBT818ySInRgdyRaZhZsXOub54T/9R4LvOuUe9rkvkZKinLzK9L5nZq8TWgN9HbK17kYyknr6ISA5RT19EJIco9EVEcohCX0Qkhyj0RURyiEJfRCSHKPRFRHLI/wew4dCwMqGpNwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#histogram\n", "sns.distplot(df_train['age'].dropna());" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>date_account_created</th>\n", " <th>timestamp_first_active</th>\n", " <th>date_first_booking</th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5uwns89zht</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000006</td>\n", " <td>NaN</td>\n", " <td>FEMALE</td>\n", " <td>35.0</td>\n", " <td>facebook</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Moweb</td>\n", " <td>iPhone</td>\n", " <td>Mobile Safari</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>jtl0dijy2j</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000051</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Moweb</td>\n", " <td>iPhone</td>\n", " <td>Mobile Safari</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>xx0ulgorjt</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000148</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>linked</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>6c6puo6ix0</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000215</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>linked</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>IE</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>czqhjk3yfe</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000305</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Safari</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>szx28ujmhf</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000336</td>\n", " <td>NaN</td>\n", " <td>FEMALE</td>\n", " <td>28.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>sem-brand</td>\n", " <td>google</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>guenkfjcbq</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000514</td>\n", " <td>NaN</td>\n", " <td>MALE</td>\n", " <td>48.0</td>\n", " <td>basic</td>\n", " <td>25</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>iOS</td>\n", " <td>iPhone</td>\n", " <td>-unknown-</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>tkpq0mlugk</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000649</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>3xtgd5p9dn</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000837</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>md9aj22l5a</td>\n", " <td>2014-07-01</td>\n", " <td>20140701002245</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>NaN</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>sem-non-brand</td>\n", " <td>google</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Firefox</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id ... first_browser\n", "0 5uwns89zht ... Mobile Safari\n", "1 jtl0dijy2j ... Mobile Safari\n", "2 xx0ulgorjt ... Chrome\n", "3 6c6puo6ix0 ... IE\n", "4 czqhjk3yfe ... Safari\n", "5 szx28ujmhf ... Chrome\n", "6 guenkfjcbq ... -unknown-\n", "7 tkpq0mlugk ... Chrome\n", "8 3xtgd5p9dn ... Chrome\n", "9 md9aj22l5a ... Firefox\n", "\n", "[10 rows x 15 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_test.head(10)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "df_train = df_train.dropna(subset=['age'])\n", "df_test['age'] = df_test['age'].fillna(36.0)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>date_account_created</th>\n", " <th>timestamp_first_active</th>\n", " <th>date_first_booking</th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>5uwns89zht</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000006</td>\n", " <td>NaN</td>\n", " <td>FEMALE</td>\n", " <td>35.0</td>\n", " <td>facebook</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Moweb</td>\n", " <td>iPhone</td>\n", " <td>Mobile Safari</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>jtl0dijy2j</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000051</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Moweb</td>\n", " <td>iPhone</td>\n", " <td>Mobile Safari</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>xx0ulgorjt</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000148</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>linked</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>6c6puo6ix0</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000215</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>linked</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>IE</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>czqhjk3yfe</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000305</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Safari</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>szx28ujmhf</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000336</td>\n", " <td>NaN</td>\n", " <td>FEMALE</td>\n", " <td>28.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>sem-brand</td>\n", " <td>google</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>guenkfjcbq</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000514</td>\n", " <td>NaN</td>\n", " <td>MALE</td>\n", " <td>48.0</td>\n", " <td>basic</td>\n", " <td>25</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>iOS</td>\n", " <td>iPhone</td>\n", " <td>-unknown-</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>tkpq0mlugk</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000649</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>3xtgd5p9dn</td>\n", " <td>2014-07-01</td>\n", " <td>20140701000837</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>direct</td>\n", " <td>direct</td>\n", " <td>untracked</td>\n", " <td>Web</td>\n", " <td>Mac Desktop</td>\n", " <td>Chrome</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>md9aj22l5a</td>\n", " <td>2014-07-01</td>\n", " <td>20140701002245</td>\n", " <td>NaN</td>\n", " <td>-unknown-</td>\n", " <td>36.0</td>\n", " <td>basic</td>\n", " <td>0</td>\n", " <td>en</td>\n", " <td>sem-non-brand</td>\n", " <td>google</td>\n", " <td>omg</td>\n", " <td>Web</td>\n", " <td>Windows Desktop</td>\n", " <td>Firefox</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id ... first_browser\n", "0 5uwns89zht ... Mobile Safari\n", "1 jtl0dijy2j ... Mobile Safari\n", "2 xx0ulgorjt ... Chrome\n", "3 6c6puo6ix0 ... IE\n", "4 czqhjk3yfe ... Safari\n", "5 szx28ujmhf ... Chrome\n", "6 guenkfjcbq ... -unknown-\n", "7 tkpq0mlugk ... Chrome\n", "8 3xtgd5p9dn ... Chrome\n", "9 md9aj22l5a ... Firefox\n", "\n", "[10 rows x 15 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_test.head(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**first_affiliate_tracked** \n", "\n", "whats the first marketing the user interacted with before the signing up" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "_uuid": "7b058337ff9b20e53ab64107fbf9a0bba262cbd0" }, "outputs": [ { "data": { "text/plain": [ "array(['untracked', 'linked', 'omg', 'product', 'marketing',\n", " 'tracked-other', nan, 'local ops'], dtype=object)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_train['first_affiliate_tracked'].unique()\n", "df_test['first_affiliate_tracked'].unique()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "untracked 33949\n", "linked 15777\n", "omg 10877\n", "product 797\n", "tracked-other 499\n", "marketing 142\n", "local ops 35\n", "Name: first_affiliate_tracked, dtype: int64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_train['first_affiliate_tracked'].value_counts()\n", "df_test['first_affiliate_tracked'].value_counts()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "df_train['first_affiliate_tracked'] = df_train['first_affiliate_tracked'].fillna('untracked')\n", "df_test['first_affiliate_tracked'] = df_test['first_affiliate_tracked'].fillna('untracked')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Total</th>\n", " <th>Percent</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>date_first_booking</th>\n", " <td>55905</td>\n", " <td>0.454084</td>\n", " </tr>\n", " <tr>\n", " <th>country_destination</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>first_browser</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>first_device_type</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_app</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>first_affiliate_tracked</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>affiliate_provider</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>affiliate_channel</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>language</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_flow</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>signup_method</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>age</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>gender</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>timestamp_first_active</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>date_account_created</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>id</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Total Percent\n", "date_first_booking 55905 0.454084\n", "country_destination 0 0.000000\n", "first_browser 0 0.000000\n", "first_device_type 0 0.000000\n", "signup_app 0 0.000000\n", "first_affiliate_tracked 0 0.000000\n", "affiliate_provider 0 0.000000\n", "affiliate_channel 0 0.000000\n", "language 0 0.000000\n", "signup_flow 0 0.000000\n", "signup_method 0 0.000000\n", "age 0 0.000000\n", "gender 0 0.000000\n", "timestamp_first_active 0 0.000000\n", "date_account_created 0 0.000000\n", "id 0 0.000000" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#missing data\n", "total = df_train.isnull().sum().sort_values(ascending=False)\n", "percent = (df_train.isnull().sum()/df_train.isnull().count()).sort_values(ascending=False)\n", "missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])\n", "missing_data.head(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**date_first_booking**\n", "\n", "date of first booking" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "df_train = df_train.drop(['date_first_booking','id'], 1)\n", "df_test = df_test.drop(['date_first_booking','id'], 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2.2.Label Encoding\n", "--------" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**country_destination**" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "_uuid": "9aff754c3ca9131df11f0f88b950da0c5b63764c" }, "outputs": [], "source": [ "\n", "\n", "# label_encoder.fit(df_train['country_destination'])\n", "# print(label_encoder.classes_)\n", "\n", "# df_train['country_destination'] = label_encoder.transform(df_train['country_destination'])\n", "# print(df_train.head(10))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Gender**" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "FEMALE 56765\n", "MALE 49987\n", "-unknown- 16139\n", "OTHER 225\n", "Name: gender, dtype: int64" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_train['gender'].value_counts()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# df_train = df_train.drop(df_train[(df_train['gender'] == '-unknown-')|(df_train['gender'] == 'OTHER')].index)\n", "# df_train['gender'].value_counts()\n", "\n", "# df_test = df_test.drop(df_test[(df_test['gender'] == '-unknown-')|(df_test['gender'] == 'OTHER')].index)\n", "# df_test['gender'].value_counts()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['-unknown-' 'FEMALE' 'MALE' 'OTHER']\n" ] } ], "source": [ "# #Label Encoding\n", "label_encoder = preprocessing.LabelEncoder() \n", "\n", "label_encoder.fit(df_train['gender'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['gender'] = label_encoder.transform(df_train['gender']) \n", "df_train.head(10)\n", "\n", "df_test['gender'] = label_encoder.transform(df_test['gender']) " ] }, { "cell_type": "markdown", "metadata": { "_uuid": "cee4b59e0ee3d31650846905896dcc57a0adc7b0" }, "source": [ "**signup_method**\n", "\n", "Test's data doesn't have a data class." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['basic' 'facebook' 'google']\n" ] } ], "source": [ "label_encoder.fit(df_train['signup_method'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['signup_method'] = label_encoder.transform(df_train['signup_method']) \n", "df_train.head(10)\n", "\n", "df_test.loc[df_test.signup_method == 'weibo', 'signup_method'] = 'google'\n", "df_test['signup_method'] = label_encoder.transform(df_test['signup_method']) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**language**" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['ca' 'cs' 'da' 'de' 'el' 'en' 'es' 'fi' 'fr' 'hr' 'hu' 'id' 'is' 'it'\n", " 'ja' 'ko' 'nl' 'no' 'pl' 'pt' 'ru' 'sv' 'th' 'tr' 'zh']\n" ] } ], "source": [ "label_encoder.fit(df_train['language'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['language'] = label_encoder.transform(df_train['language']) \n", "df_train.head(10)\n", "\n", "df_test.loc[df_test.language == '-unknown-', 'language'] = 'en'\n", "df_test['language'] = label_encoder.transform(df_test['language']) \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**affiliate_channel**" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['api' 'content' 'direct' 'other' 'remarketing' 'sem-brand'\n", " 'sem-non-brand' 'seo']\n" ] } ], "source": [ "label_encoder.fit(df_train['affiliate_channel'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['affiliate_channel'] = label_encoder.transform(df_train['affiliate_channel']) \n", "df_train.head(10)\n", "\n", "df_test['affiliate_channel'] = label_encoder.transform(df_test['affiliate_channel']) " ] }, { "cell_type": "markdown", "metadata": { "_uuid": "62e684f41012b40e5bacbc942741b7b29ee0101e" }, "source": [ "**affiliate_provider**" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['baidu' 'bing' 'craigslist' 'direct' 'email-marketing' 'facebook'\n", " 'facebook-open-graph' 'google' 'gsp' 'meetup' 'naver' 'other' 'padmapper'\n", " 'vast' 'wayn' 'yahoo' 'yandex']\n" ] } ], "source": [ "label_encoder.fit(df_train['affiliate_provider'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['affiliate_provider'] = label_encoder.transform(df_train['affiliate_provider']) \n", "df_train.head(10)\n", "\n", "df_test.loc[df_test.affiliate_provider == 'daum', 'affiliate_provider'] = 'other'\n", "df_test['affiliate_provider'] = label_encoder.transform(df_test['affiliate_provider'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**first_affiliate_tracked**" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['linked' 'local ops' 'marketing' 'omg' 'product' 'tracked-other'\n", " 'untracked']\n" ] } ], "source": [ "label_encoder.fit(df_train['first_affiliate_tracked'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['first_affiliate_tracked'] = label_encoder.transform(df_train['first_affiliate_tracked']) \n", "df_train.head(10)\n", "\n", "df_test['first_affiliate_tracked'] = label_encoder.transform(df_test['first_affiliate_tracked']) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**signup_app**" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Android' 'Moweb' 'Web' 'iOS']\n" ] } ], "source": [ "label_encoder.fit(df_train['signup_app'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['signup_app'] = label_encoder.transform(df_train['signup_app']) \n", "df_train.head(10)\n", "\n", "df_test['signup_app'] = label_encoder.transform(df_test['signup_app']) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**first_device_type**" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Android Phone' 'Android Tablet' 'Desktop (Other)' 'Mac Desktop'\n", " 'Other/Unknown' 'SmartPhone (Other)' 'Windows Desktop' 'iPad' 'iPhone']\n" ] } ], "source": [ "label_encoder.fit(df_train['first_device_type'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['first_device_type'] = label_encoder.transform(df_train['first_device_type']) \n", "df_train.head(10)\n", "\n", "df_test['first_device_type'] = label_encoder.transform(df_test['first_device_type']) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**first_browser**" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['-unknown-' 'AOL Explorer' 'Android Browser' 'Apple Mail' 'Avant Browser'\n", " 'BlackBerry Browser' 'Camino' 'Chrome' 'Chrome Mobile' 'Chromium'\n", " 'CometBird' 'Comodo Dragon' 'CoolNovo' 'Firefox' 'IE' 'IE Mobile'\n", " 'IceWeasel' 'Iron' 'Kindle Browser' 'Maxthon' 'Mobile Firefox'\n", " 'Mobile Safari' 'Mozilla' 'NetNewsWire' 'Opera' 'Opera Mini'\n", " 'Opera Mobile' 'PS Vita browser' 'Pale Moon' 'RockMelt' 'Safari'\n", " 'SeaMonkey' 'Silk' 'SiteKiosk' 'SlimBrowser' 'Sogou Explorer' 'Stainless'\n", " 'TenFourFox' 'TheWorld Browser' 'Yandex.Browser' 'wOSBrowser']\n" ] } ], "source": [ "label_encoder.fit(df_train['first_browser'])\n", "print(label_encoder.classes_)\n", "\n", "df_train['first_browser'] = label_encoder.transform(df_train['first_browser']) \n", "df_train.head(10)\n", "\n", "df_test.loc[df_test.first_browser == 'wOSBrowser', 'first_browser'] = '-unknown-'\n", "df_test.loc[df_test.first_browser == 'Mobile Safari', 'first_browser'] = '-unknown-'\n", "df_test.loc[df_test.first_browser == 'UC Browser', 'first_browser'] = '-unknown-'\n", "df_test.loc[df_test.first_browser == 'IBrowse', 'first_browser'] = '-unknown-'\n", "df_test.loc[df_test.first_browser == 'Nintendo Browser', 'first_browser'] = '-unknown-'\n", "\n", "\n", "df_test['first_browser'] = label_encoder.transform(df_test['first_browser']) " ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "df_train['date_account_created_year'] = pd.DatetimeIndex(df_train['date_account_created']).year\n", "df_train['date_account_created_month'] = pd.DatetimeIndex(df_train['date_account_created']).month\n", "\n", "df_test['date_account_created_year'] = pd.DatetimeIndex(df_test['date_account_created']).year\n", "df_test['date_account_created_month'] = pd.DatetimeIndex(df_test['date_account_created']).month" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "df_train = df_train.drop(['date_account_created','timestamp_first_active'], 1)\n", "df_train.head(10)\n", "\n", "df_test = df_test.drop(['date_account_created','timestamp_first_active'], 1)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gender int64\n", "age float64\n", "signup_method int64\n", "signup_flow int64\n", "language int64\n", "affiliate_channel int64\n", "affiliate_provider int64\n", "first_affiliate_tracked int64\n", "signup_app int64\n", "first_device_type int64\n", "first_browser int64\n", "country_destination object\n", "date_account_created_year int64\n", "date_account_created_month int64\n", "dtype: object\n" ] } ], "source": [ "print(df_train.dtypes)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gender object\n", "age float64\n", "signup_method object\n", "signup_flow object\n", "language object\n", "affiliate_channel object\n", "affiliate_provider object\n", "first_affiliate_tracked object\n", "signup_app object\n", "first_device_type object\n", "first_browser object\n", "country_destination object\n", "date_account_created_year object\n", "date_account_created_month object\n", "dtype: object\n" ] } ], "source": [ "for col in ['gender',\n", "'signup_method',\n", "'signup_flow',\n", "'language',\n", "'affiliate_channel',\n", "'affiliate_provider',\n", "'first_affiliate_tracked',\n", "'signup_app',\n", "'first_device_type',\n", "'first_browser',\n", "'country_destination',\n", "'date_account_created_year',\n", "'date_account_created_month']:\n", " df_train[col] = df_train[col].astype('str')\n", "print(df_train.dtypes)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "feature = ['gender',\n", " 'age',\n", "'signup_method',\n", "'signup_flow',\n", "'language',\n", "'affiliate_channel',\n", "'affiliate_provider',\n", "'first_affiliate_tracked',\n", "'signup_app',\n", "'first_device_type',\n", "'first_browser',\n", "'date_account_created_year',\n", "'date_account_created_month']\n", "target = 'country_destination'" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "df = df_train.copy()\n", "\n", "df_t = df_test.copy()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " <th>date_account_created_year</th>\n", " <th>date_account_created_month</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>14</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>48.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " gender ... date_account_created_month\n", "0 1 ... 7\n", "1 0 ... 7\n", "2 0 ... 7\n", "3 0 ... 7\n", "4 0 ... 7\n", "5 1 ... 7\n", "6 2 ... 7\n", "7 0 ... 7\n", "8 0 ... 7\n", "9 0 ... 7\n", "\n", "[10 rows x 13 columns]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_test.head(10)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " <th>date_account_created_year</th>\n", " <th>date_account_created_month</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>14</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>48.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " gender ... date_account_created_month\n", "0 1 ... 7\n", "1 0 ... 7\n", "2 0 ... 7\n", "3 0 ... 7\n", "4 0 ... 7\n", "5 1 ... 7\n", "6 2 ... 7\n", "7 0 ... 7\n", "8 0 ... 7\n", "9 0 ... 7\n", "\n", "[10 rows x 13 columns]" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t.head(10)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "df_train, df_test = train_test_split(df, test_size=0.3, random_state=0)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "df_train_target = df_train['country_destination']\n", "df_train = df_train.drop(['country_destination'],1)\n", "df_test_target = df_test['country_destination']\n", "df_test = df_test.drop(['country_destination'],1)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", " min_impurity_decrease=0.0, min_impurity_split=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,\n", " oob_score=True, random_state=123456, verbose=0,\n", " warm_start=False)" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rf = RandomForestClassifier(n_estimators=100, oob_score=True, random_state=123456)\n", "rf.fit(df_train, df_train_target)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Out-of-bag score estimate: 0.467\n", "Mean accuracy score: 0.473\n" ] } ], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "predicted = rf.predict(df_test)\n", "accuracy = accuracy_score(df_test_target, predicted)\n", "\n", "print(f'Out-of-bag score estimate: {rf.oob_score_:.3}')\n", "print(f'Mean accuracy score: {accuracy:.3}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Test**" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", " min_impurity_decrease=0.0, min_impurity_split=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,\n", " oob_score=True, random_state=123456, verbose=0,\n", " warm_start=False)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rf = RandomForestClassifier(n_estimators=100, oob_score=True, random_state=123456)\n", "rf.fit(df_train, df_train_target)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>gender</th>\n", " <th>age</th>\n", " <th>signup_method</th>\n", " <th>signup_flow</th>\n", " <th>language</th>\n", " <th>affiliate_channel</th>\n", " <th>affiliate_provider</th>\n", " <th>first_affiliate_tracked</th>\n", " <th>signup_app</th>\n", " <th>first_device_type</th>\n", " <th>first_browser</th>\n", " <th>date_account_created_year</th>\n", " <th>date_account_created_month</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>14</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2</td>\n", " <td>48.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>1</td>\n", " <td>30.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2</td>\n", " <td>24.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>1</td>\n", " <td>56.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>0</td>\n", " <td>30.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>1</td>\n", " <td>33.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>14</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>2</td>\n", " <td>31.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>1</td>\n", " <td>53.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>2</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>2</td>\n", " <td>34.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>1</td>\n", " <td>25.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>14</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>0</td>\n", " <td>27.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>4</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>70</th>\n", " <td>1</td>\n", " <td>28.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>71</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>1</td>\n", " <td>42.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>73</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>74</th>\n", " <td>2</td>\n", " <td>52.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>75</th>\n", " <td>1</td>\n", " <td>51.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>76</th>\n", " <td>2</td>\n", " <td>105.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>13</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>77</th>\n", " <td>2</td>\n", " <td>24.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>78</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>2</td>\n", " <td>12</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>79</th>\n", " <td>2</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>80</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>81</th>\n", " <td>0</td>\n", " <td>30.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>82</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>83</th>\n", " <td>2</td>\n", " <td>26.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>84</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>85</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>86</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>87</th>\n", " <td>2</td>\n", " <td>29.0</td>\n", " <td>1</td>\n", " <td>25</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>3</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>88</th>\n", " <td>2</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>89</th>\n", " <td>2</td>\n", " <td>59.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>90</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>91</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>92</th>\n", " <td>1</td>\n", " <td>32.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>93</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>94</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>95</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>96</th>\n", " <td>1</td>\n", " <td>54.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>3</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>30</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>97</th>\n", " <td>0</td>\n", " <td>36.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>98</th>\n", " <td>2</td>\n", " <td>30.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>99</th>\n", " <td>0</td>\n", " <td>27.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>5</td>\n", " <td>2</td>\n", " <td>3</td>\n", " <td>6</td>\n", " <td>2</td>\n", " <td>7</td>\n", " <td>8</td>\n", " <td>2014</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>100 rows × 13 columns</p>\n", "</div>" ], "text/plain": [ " gender ... date_account_created_month\n", "0 1 ... 7\n", "1 0 ... 7\n", "2 0 ... 7\n", "3 0 ... 7\n", "4 0 ... 7\n", "5 1 ... 7\n", "6 2 ... 7\n", "7 0 ... 7\n", "8 0 ... 7\n", "9 0 ... 7\n", "10 0 ... 7\n", "11 1 ... 7\n", "12 2 ... 7\n", "13 0 ... 7\n", "14 0 ... 7\n", "15 1 ... 7\n", "16 0 ... 7\n", "17 0 ... 7\n", "18 1 ... 7\n", "19 2 ... 7\n", "20 1 ... 7\n", "21 0 ... 7\n", "22 2 ... 7\n", "23 0 ... 7\n", "24 0 ... 7\n", "25 2 ... 7\n", "26 1 ... 7\n", "27 0 ... 7\n", "28 0 ... 7\n", "29 0 ... 7\n", ".. ... ... ...\n", "70 1 ... 7\n", "71 0 ... 7\n", "72 1 ... 7\n", "73 0 ... 7\n", "74 2 ... 7\n", "75 1 ... 7\n", "76 2 ... 7\n", "77 2 ... 7\n", "78 0 ... 7\n", "79 2 ... 7\n", "80 0 ... 7\n", "81 0 ... 7\n", "82 0 ... 7\n", "83 2 ... 7\n", "84 0 ... 7\n", "85 0 ... 7\n", "86 0 ... 7\n", "87 2 ... 7\n", "88 2 ... 7\n", "89 2 ... 7\n", "90 0 ... 7\n", "91 0 ... 7\n", "92 1 ... 7\n", "93 0 ... 7\n", "94 0 ... 7\n", "95 0 ... 7\n", "96 1 ... 7\n", "97 0 ... 7\n", "98 2 ... 7\n", "99 0 ... 7\n", "\n", "[100 rows x 13 columns]" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_t.head(100)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(62096, 13)\n" ] } ], "source": [ "print(df_t.shape)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "predicted = rf.predict(df_t)\n", "test = pd.DataFrame(columns=['id', 'country'])\n", "test['id'] = test_users['id']\n", "test['country'] = predicted\n", "\n", "test.to_csv('submission.csv')" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "#le.transform([1, 1, 2, 6]) " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 1 }
0011/662/11662843.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/665/11665030.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/665/11665056.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/665/11665181.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_uuid\": \"6a091d(...TRUNCATED)
0011/665/11665207.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"b(...TRUNCATED)
0011/665/11665355.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/665/11665413.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/665/11665549.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n (...TRUNCATED)
0011/665/11665776.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0011/666/11666213.ipynb
s3://data-agents/kaggle-outputs/sharded/021_00011.jsonl.gz
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
25