Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
text
stringlengths
1.54k
97.9M
id
stringlengths
22
24
file_path
stringclasses
49 values
{ "cells": [ { "cell_type": "markdown", "metadata": { "_cell_guid": "3b65f9e3-5d03-9e8d-c8dd-679d0bfd90a9" }, "source": [ "Notebook for Titanic data set prediction.\n", "input: age, pclass, sex, sibsp, parch, fare, embarked\n", "output: survived" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "_cell_guid": "c91a5529-1679-ee33-4555-6f03fa40e1f4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "genderclassmodel.csv\n", "gendermodel.csv\n", "gendermodel.py\n", "myfirstforest.py\n", "test.csv\n", "train.csv\n", "\n" ] } ], "source": [ "# This Python 3 environment comes with many helpful analytics libraries installed\n", "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python\n", "# For example, here's several helpful packages to load in \n", "\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "\n", "# Input data files are available in the \"../input/\" directory.\n", "# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory\n", "\n", "from subprocess import check_output\n", "print(check_output([\"ls\", \"../input\"]).decode(\"utf8\"))\n", "\n", "# Any results you write to the current directory are saved as output." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "_cell_guid": "c28f11bc-5943-8eeb-0e03-e4d80ff91f44" }, "outputs": [], "source": [ "data_train = pd.read_csv('../input/train.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "_cell_guid": "74ab2594-406c-0030-7ef4-bd28775b6bfd" }, "outputs": [], "source": [ "data_train.shape\n", "X = np.zeros((891, 6))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "_cell_guid": "fa9e0b2c-1925-6912-7cf0-3c2c3bcdb453" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PassengerId 1\n", "Survived 0\n", "Pclass 3\n", "Name Braund, Mr. Owen Harris\n", "Sex male\n", "Age 22\n", "SibSp 1\n", "Parch 0\n", "Ticket A/5 21171\n", "Fare 7.25\n", "Cabin NaN\n", "Embarked S\n", "Name: 0, dtype: object\n" ] }, { "data": { "text/plain": [ "PassengerId 1\n", "Survived 0\n", "Pclass 3\n", "Name Braund, Mr. Owen Harris\n", "Sex male\n", "Age 22\n", "SibSp 1\n", "Parch 0\n", "Ticket A/5 21171\n", "Fare 7.25\n", "Cabin NaN\n", "Embarked S\n", "Name: 0, dtype: object" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "i=1\n", "for index, row in data_train.iterrows():\n", " print(row)\n", " break\n", "row" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "_cell_guid": "6e3cfa8b-d6f1-a7fc-f890-ddd59bea418c" }, "outputs": [ { "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(data_train)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "_cell_guid": "00aaab45-bf6d-63a5-1cc0-35305e7db6c3" }, "outputs": [], "source": [] } ], "metadata": { "_change_revision": 135, "_is_fork": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 0 }
0001/155/1155134.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
{ "cells": [ { "cell_type": "markdown", "metadata": { "_cell_guid": "fd0736e3-17be-6705-3064-84a9ab08fb8e" }, "source": [ "#Python code Heading for Titanic disaster analysis#\n", "\n", "[*in progress*][1]\n", "\n", "\n", " [1]: https://www.kaggle.com/c/titanic" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "025b678a-fb67-ca49-2b1b-a90bce5e1f2b" }, "source": [ "##Importing libraries##" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "_cell_guid": "a21163a7-da5d-5db8-6df2-0ee8fad75ab3" }, "outputs": [], "source": [ "# This Python 3 environment comes with many helpful analytics libraries installed\n", "# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python\n", "# For example, here's several helpful packages to load in \n", "\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "a5600b67-95f8-a004-72c9-1d315fb77c85" }, "source": [ "##Exploring the data##" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "_cell_guid": "616d770c-6cef-1853-b5bd-54192affb3be" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Input data files are available in the \"../input/\" directory.\n", "train = pd.read_csv(\"../input/train.csv\")\n", "test = pd.read_csv(\"../input/test.csv\")\n", "\n", "train.head(5)" ] }, { "cell_type": "markdown", "metadata": { "_cell_guid": "94060e58-0348-e0ca-8fab-c1a6e391d5cc" }, "source": [ "## Data Dictionary ##\n", "- **survived** => 0: No, 1:Yes\n", "- **pclass** =>Ticket class (1st, 2nd, 3rd). A proxy for socio-economic status (SES)\n", "- **sex** => Sex\t\n", "- **Age** => Age in years. Age is fractional if less than 1\n", "- **sibsp** => # of siblings / spouses aboard the Titanic\t\n", "- **parch** => # of parents / children aboard the Titanic\t\n", "- **ticket** => Ticket number\t\n", "- **fare**\t => Passenger fare\t\n", "- **cabin** => Cabin number\t\n", "- **embarked** => Port of Embarkation" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "_cell_guid": "ada93334-7ade-9e87-ee69-e52e1e0c8362" }, "outputs": [], "source": [] } ], "metadata": { "_change_revision": 92, "_is_fork": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 0 }
0001/155/1155180.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"7(...TRUNCATED)
0001/155/1155188.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"8(...TRUNCATED)
0001/155/1155189.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"e(...TRUNCATED)
0001/155/1155205.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"e(...TRUNCATED)
0001/155/1155264.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"2(...TRUNCATED)
0001/155/1155266.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"3(...TRUNCATED)
0001/155/1155297.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"7(...TRUNCATED)
0001/155/1155346.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {\n \"_cell_guid\": \"3(...TRUNCATED)
0001/155/1155352.ipynb
s3://data-agents/kaggle-outputs/sharded/017_00001.jsonl.gz
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
26