Dataset Viewer (First 5GB)
Search is not available for this dataset
text
stringlengths 1.7k
93M
| id
stringlengths 22
24
| file_path
stringclasses 54
values |
---|---|---|
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "5fa56f08",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:30.198201Z",
"iopub.status.busy": "2021-08-31T02:14:30.197617Z",
"iopub.status.idle": "2021-08-31T02:14:32.557104Z",
"shell.execute_reply": "2021-08-31T02:14:32.558256Z",
"shell.execute_reply.started": "2021-08-31T01:59:17.853890Z"
},
"papermill": {
"duration": 2.380896,
"end_time": "2021-08-31T02:14:32.558639",
"exception": false,
"start_time": "2021-08-31T02:14:30.177743",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"import sys\n",
"import numpy as np\n",
"np.set_printoptions(threshold=np.inf)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3391a63a",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:32.583734Z",
"iopub.status.busy": "2021-08-31T02:14:32.582841Z",
"iopub.status.idle": "2021-08-31T02:14:32.596559Z",
"shell.execute_reply": "2021-08-31T02:14:32.596983Z",
"shell.execute_reply.started": "2021-08-31T01:59:17.861632Z"
},
"papermill": {
"duration": 0.029989,
"end_time": "2021-08-31T02:14:32.597131",
"exception": false,
"start_time": "2021-08-31T02:14:32.567142",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import random\n",
"df = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv', header=0, names=['id','true_value'], dtype=object)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0086c3a7",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:32.620379Z",
"iopub.status.busy": "2021-08-31T02:14:32.619629Z",
"iopub.status.idle": "2021-08-31T02:14:32.632553Z",
"shell.execute_reply": "2021-08-31T02:14:32.632992Z",
"shell.execute_reply.started": "2021-08-31T01:59:17.883421Z"
},
"papermill": {
"duration": 0.028059,
"end_time": "2021-08-31T02:14:32.633116",
"exception": false,
"start_time": "2021-08-31T02:14:32.605057",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>true_value</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>00000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>00002</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>00003</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>00005</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>00006</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id true_value\n",
"0 00000 1\n",
"1 00002 1\n",
"2 00003 0\n",
"3 00005 1\n",
"4 00006 1"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e7fc3279",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:32.655203Z",
"iopub.status.busy": "2021-08-31T02:14:32.654653Z",
"iopub.status.idle": "2021-08-31T02:14:32.668270Z",
"shell.execute_reply": "2021-08-31T02:14:32.667861Z",
"shell.execute_reply.started": "2021-08-31T01:59:17.899653Z"
},
"papermill": {
"duration": 0.027012,
"end_time": "2021-08-31T02:14:32.668383",
"exception": false,
"start_time": "2021-08-31T02:14:32.641371",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"df_test = pd.DataFrame(columns=['id', 'value'])\n",
"df_test.id = os.listdir(\"../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "082953b1",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:32.688876Z",
"iopub.status.busy": "2021-08-31T02:14:32.688197Z",
"iopub.status.idle": "2021-08-31T02:14:32.690916Z",
"shell.execute_reply": "2021-08-31T02:14:32.690416Z",
"shell.execute_reply.started": "2021-08-31T01:59:17.910238Z"
},
"papermill": {
"duration": 0.014577,
"end_time": "2021-08-31T02:14:32.691016",
"exception": false,
"start_time": "2021-08-31T02:14:32.676439",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"#https://stackoverflow.com/a/4836734/8245487\n",
"def natural_sort(l): \n",
" convert = lambda text: int(text) if text.isdigit() else text.lower()\n",
" alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]\n",
" return sorted(l, key=alphanum_key)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "38b66acc",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:14:32.720592Z",
"iopub.status.busy": "2021-08-31T02:14:32.719971Z",
"iopub.status.idle": "2021-08-31T02:36:35.550245Z",
"shell.execute_reply": "2021-08-31T02:36:35.549518Z"
},
"papermill": {
"duration": 1322.851483,
"end_time": "2021-08-31T02:36:35.550467",
"exception": false,
"start_time": "2021-08-31T02:14:32.698984",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:78: RuntimeWarning: invalid value encountered in true_divide\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Its possible!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n",
"Its possible!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Nope!\n",
"Its possible!\n"
]
}
],
"source": [
"import os\n",
"import pydicom\n",
"import pandas as pd\n",
"from pydicom.pixel_data_handlers.util import apply_voi_lut\n",
"from tqdm import tqdm\n",
"import binascii\n",
"from PIL import Image\n",
"from multiprocessing import Pool\n",
"\n",
"\n",
"INPUT = '../input/rsna-miccai-brain-tumor-radiogenomic-classification'\n",
"\n",
"def get_dicom_files(dataset, df):\n",
" for cur_id in df.id:\n",
" pred = get_dicom_files_helper(dataset, cur_id)\n",
" df.loc[df.id==cur_id,'value'] = pred\n",
"\n",
"def get_dark_cells(data):\n",
" return np.sum((data > 60) & (data <= 230), axis=(0,1))\n",
"\n",
"def get_very_bright_cells(data):\n",
" return np.sum((data > 230), axis=(0,1))\n",
"\n",
"def get_live_cells(data):\n",
" return np.sum((data > 60), axis=(0,1))\n",
"\n",
"\n",
"def get_dicom_files_helper(dataset, cur_id):\n",
" root = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/{}'.format(dataset)\n",
" for scan_type in ['FLAIR', 'T1w', 'T1wCE', 'T2w']:\n",
" cur_dir = os.path.join(root, cur_id, scan_type)\n",
" dicoms = os.listdir(cur_dir)\n",
" if len(dicoms) == 0:\n",
" print('Skipping {}'.format(cur_dir))\n",
" continue\n",
" \n",
" dicoms = natural_sort(dicoms)\n",
" clip = len(dicoms) // 3\n",
" upper_clip = len(dicoms)-clip\n",
" dicoms = dicoms[clip:upper_clip] #take middle 1/3\n",
" num_dicoms = len(dicoms)\n",
"\n",
" possible_meth = 0 #per image type\n",
"\n",
" for dicom in dicoms:\n",
" filepath = os.path.join(cur_dir, dicom)\n",
" data = process_dicom(filepath)\n",
" #print(data)\n",
" live_cells = get_live_cells(data)\n",
" if live_cells < 10:\n",
" continue\n",
" dark_cells = get_dark_cells(data)\n",
" bright_cells = live_cells - dark_cells\n",
" very_bright_cells = get_very_bright_cells(data)\n",
" not_very_bright_cells = live_cells - very_bright_cells \n",
" mostly_dark = (dark_cells/live_cells) > 0.5\n",
" if mostly_dark:\n",
" if (very_bright_cells/live_cells) > 0.20:\n",
" possible_meth += 1\n",
" #mostly bright picture\n",
" elif (not_very_bright_cells/live_cells) > 0.20: \n",
" possible_meth += 1\n",
" \n",
" if possible_meth >= (num_dicoms * 0.05):\n",
" print('Its possible!')\n",
" return 1\n",
" \n",
" print('Nope!')\n",
" return 0\n",
" \n",
"\n",
"def process_dicom(path):\n",
" dicom = pydicom.read_file(path)\n",
" data = apply_voi_lut(dicom.pixel_array, dicom)\n",
" if dicom.PhotometricInterpretation == \"MONOCHROME1\":\n",
" data = np.amax(data) - data\n",
" data = data - np.min(data)\n",
" data = data / np.max(data)\n",
" data = (data * 255).astype(np.uint8)\n",
" \n",
" return data\n",
"\n",
"\n",
"get_dicom_files('train', df)\n",
"get_dicom_files('test', df_test)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a393f6e7",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:36:35.903148Z",
"iopub.status.busy": "2021-08-31T02:36:35.902240Z",
"iopub.status.idle": "2021-08-31T02:36:35.905960Z",
"shell.execute_reply": "2021-08-31T02:36:35.906328Z"
},
"papermill": {
"duration": 0.185031,
"end_time": "2021-08-31T02:36:35.906458",
"exception": false,
"start_time": "2021-08-31T02:36:35.721427",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"0.0 541\n",
"1.0 44\n",
"Name: value, dtype: int64"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.value.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "adaf3415",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:36:36.261702Z",
"iopub.status.busy": "2021-08-31T02:36:36.261183Z",
"iopub.status.idle": "2021-08-31T02:36:36.265617Z",
"shell.execute_reply": "2021-08-31T02:36:36.265995Z"
},
"papermill": {
"duration": 0.187251,
"end_time": "2021-08-31T02:36:36.266126",
"exception": false,
"start_time": "2021-08-31T02:36:36.078875",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"1 307\n",
"0 278\n",
"Name: true_value, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.true_value.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e6c92858",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:36:36.612143Z",
"iopub.status.busy": "2021-08-31T02:36:36.611580Z",
"iopub.status.idle": "2021-08-31T02:36:36.630475Z",
"shell.execute_reply": "2021-08-31T02:36:36.630931Z"
},
"papermill": {
"duration": 0.194232,
"end_time": "2021-08-31T02:36:36.631125",
"exception": false,
"start_time": "2021-08-31T02:36:36.436893",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>true_value</th>\n",
" <th>value</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>00000</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>00002</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>00003</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>00005</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>00006</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>580</th>\n",
" <td>01005</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>581</th>\n",
" <td>01007</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>582</th>\n",
" <td>01008</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>583</th>\n",
" <td>01009</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>584</th>\n",
" <td>01010</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>541 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" id true_value value\n",
"0 00000 1 0.0\n",
"1 00002 1 0.0\n",
"2 00003 0 0.0\n",
"3 00005 1 0.0\n",
"4 00006 1 0.0\n",
".. ... ... ...\n",
"580 01005 1 0.0\n",
"581 01007 1 0.0\n",
"582 01008 1 0.0\n",
"583 01009 0 0.0\n",
"584 01010 0 0.0\n",
"\n",
"[541 rows x 3 columns]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df.value==0]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9426cbd0",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:36:37.021057Z",
"iopub.status.busy": "2021-08-31T02:36:37.020425Z",
"iopub.status.idle": "2021-08-31T02:36:37.025215Z",
"shell.execute_reply": "2021-08-31T02:36:37.024810Z"
},
"papermill": {
"duration": 0.180216,
"end_time": "2021-08-31T02:36:37.025333",
"exception": false,
"start_time": "2021-08-31T02:36:36.845117",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"0 82\n",
"1 5\n",
"Name: value, dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_test.value.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b4f8fe35",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:36:37.375911Z",
"iopub.status.busy": "2021-08-31T02:36:37.375355Z",
"iopub.status.idle": "2021-08-31T02:36:37.383272Z",
"shell.execute_reply": "2021-08-31T02:36:37.382844Z"
},
"papermill": {
"duration": 0.185768,
"end_time": "2021-08-31T02:36:37.383399",
"exception": false,
"start_time": "2021-08-31T02:36:37.197631",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"df_test.rename(columns={'id':'BraTS21ID','value':'MGMT_value'}).to_csv('submission.csv', index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"papermill": {
"default_parameters": {},
"duration": 1334.954091,
"end_time": "2021-08-31T02:36:38.667118",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2021-08-31T02:14:23.713027",
"version": "2.3.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
| 0073/574/73574080.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "62860b21",
"metadata": {
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"execution": {
"iopub.execute_input": "2021-08-31T02:21:25.804261Z",
"iopub.status.busy": "2021-08-31T02:21:25.802219Z",
"iopub.status.idle": "2021-08-31T02:21:25.892755Z",
"shell.execute_reply": "2021-08-31T02:21:25.891546Z",
"shell.execute_reply.started": "2021-08-31T01:56:11.005778Z"
},
"papermill": {
"duration": 0.115678,
"end_time": "2021-08-31T02:21:25.892968",
"exception": false,
"start_time": "2021-08-31T02:21:25.777290",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/kaggle/input/tabular-playground-series-aug-2021/sample_submission.csv\n",
"/kaggle/input/tabular-playground-series-aug-2021/train.csv\n",
"/kaggle/input/tabular-playground-series-aug-2021/test.csv\n"
]
}
],
"source": [
"# This Python 3 environment comes with many helpful analytics libraries installed\n",
"# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
"# For example, here's several helpful packages to load\n",
"\n",
"import numpy as np # linear algebra\n",
"import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
"\n",
"# Input data files are available in the read-only \"../input/\" directory\n",
"# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n",
"\n",
"import os\n",
"for dirname, _, filenames in os.walk('/kaggle/input'):\n",
" for filename in filenames:\n",
" print(os.path.join(dirname, filename))\n",
"\n",
"# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n",
"# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f1883381",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:25.974398Z",
"iopub.status.busy": "2021-08-31T02:21:25.973388Z",
"iopub.status.idle": "2021-08-31T02:21:27.015163Z",
"shell.execute_reply": "2021-08-31T02:21:27.014421Z",
"shell.execute_reply.started": "2021-08-31T01:56:11.055483Z"
},
"papermill": {
"duration": 1.083032,
"end_time": "2021-08-31T02:21:27.015387",
"exception": false,
"start_time": "2021-08-31T02:21:25.932355",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"# from catboost import Pool, CatBoostRegressor\n",
"from sklearn.preprocessing import OrdinalEncoder, StandardScaler, RobustScaler,PowerTransformer,QuantileTransformer,OneHotEncoder\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import mean_squared_error\n",
"from xgboost import XGBRegressor"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ce4bfa35",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:27.058321Z",
"iopub.status.busy": "2021-08-31T02:21:27.057512Z",
"iopub.status.idle": "2021-08-31T02:21:37.342013Z",
"shell.execute_reply": "2021-08-31T02:21:37.343692Z",
"shell.execute_reply.started": "2021-08-31T01:56:15.364215Z"
},
"papermill": {
"duration": 10.30979,
"end_time": "2021-08-31T02:21:37.344042",
"exception": false,
"start_time": "2021-08-31T02:21:27.034252",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# import data\n",
"train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv',index_col = 0)\n",
"test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv',index_col = 0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d9d14b0e",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.428690Z",
"iopub.status.busy": "2021-08-31T02:21:37.427683Z",
"iopub.status.idle": "2021-08-31T02:21:37.482592Z",
"shell.execute_reply": "2021-08-31T02:21:37.483906Z",
"shell.execute_reply.started": "2021-08-31T01:56:25.099729Z"
},
"papermill": {
"duration": 0.105075,
"end_time": "2021-08-31T02:21:37.484138",
"exception": false,
"start_time": "2021-08-31T02:21:37.379063",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>f0</th>\n",
" <th>f1</th>\n",
" <th>f2</th>\n",
" <th>f3</th>\n",
" <th>f4</th>\n",
" <th>f5</th>\n",
" <th>f6</th>\n",
" <th>f7</th>\n",
" <th>f8</th>\n",
" <th>f9</th>\n",
" <th>...</th>\n",
" <th>f91</th>\n",
" <th>f92</th>\n",
" <th>f93</th>\n",
" <th>f94</th>\n",
" <th>f95</th>\n",
" <th>f96</th>\n",
" <th>f97</th>\n",
" <th>f98</th>\n",
" <th>f99</th>\n",
" <th>loss</th>\n",
" </tr>\n",
" <tr>\n",
" <th>id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>-0.002350</td>\n",
" <td>59</td>\n",
" <td>0.766739</td>\n",
" <td>-1.350460</td>\n",
" <td>42.2727</td>\n",
" <td>16.68570</td>\n",
" <td>30.3599</td>\n",
" <td>1.267300</td>\n",
" <td>0.392007</td>\n",
" <td>1.09101</td>\n",
" <td>...</td>\n",
" <td>-42.43990</td>\n",
" <td>26.854000</td>\n",
" <td>1.45751</td>\n",
" <td>0.696161</td>\n",
" <td>0.941764</td>\n",
" <td>1.828470</td>\n",
" <td>0.924090</td>\n",
" <td>2.29658</td>\n",
" <td>10.48980</td>\n",
" <td>15</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.784462</td>\n",
" <td>145</td>\n",
" <td>-0.463845</td>\n",
" <td>-0.530421</td>\n",
" <td>27324.9000</td>\n",
" <td>3.47545</td>\n",
" <td>160.4980</td>\n",
" <td>0.828007</td>\n",
" <td>3.735860</td>\n",
" <td>1.28138</td>\n",
" <td>...</td>\n",
" <td>-184.13200</td>\n",
" <td>7.901370</td>\n",
" <td>1.70644</td>\n",
" <td>-0.494699</td>\n",
" <td>-2.058300</td>\n",
" <td>0.819184</td>\n",
" <td>0.439152</td>\n",
" <td>2.36470</td>\n",
" <td>1.14383</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.317816</td>\n",
" <td>19</td>\n",
" <td>-0.432571</td>\n",
" <td>-0.382644</td>\n",
" <td>1383.2600</td>\n",
" <td>19.71290</td>\n",
" <td>31.1026</td>\n",
" <td>-0.515354</td>\n",
" <td>34.430800</td>\n",
" <td>1.24210</td>\n",
" <td>...</td>\n",
" <td>7.43721</td>\n",
" <td>37.218100</td>\n",
" <td>3.25339</td>\n",
" <td>0.337934</td>\n",
" <td>0.615037</td>\n",
" <td>2.216760</td>\n",
" <td>0.745268</td>\n",
" <td>1.69679</td>\n",
" <td>12.30550</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.210753</td>\n",
" <td>17</td>\n",
" <td>-0.616454</td>\n",
" <td>0.946362</td>\n",
" <td>-119.2530</td>\n",
" <td>4.08235</td>\n",
" <td>185.2570</td>\n",
" <td>1.383310</td>\n",
" <td>-47.521400</td>\n",
" <td>1.09130</td>\n",
" <td>...</td>\n",
" <td>9.66778</td>\n",
" <td>0.626942</td>\n",
" <td>1.49425</td>\n",
" <td>0.517513</td>\n",
" <td>-10.222100</td>\n",
" <td>2.627310</td>\n",
" <td>0.617270</td>\n",
" <td>1.45645</td>\n",
" <td>10.02880</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.439671</td>\n",
" <td>20</td>\n",
" <td>0.968126</td>\n",
" <td>-0.092546</td>\n",
" <td>74.3020</td>\n",
" <td>12.30650</td>\n",
" <td>72.1860</td>\n",
" <td>-0.233964</td>\n",
" <td>24.399100</td>\n",
" <td>1.10151</td>\n",
" <td>...</td>\n",
" <td>290.65700</td>\n",
" <td>15.604300</td>\n",
" <td>1.73557</td>\n",
" <td>-0.476668</td>\n",
" <td>1.390190</td>\n",
" <td>2.195740</td>\n",
" <td>0.826987</td>\n",
" <td>1.78485</td>\n",
" <td>7.07197</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 101 columns</p>\n",
"</div>"
],
"text/plain": [
" f0 f1 f2 f3 f4 f5 f6 \\\n",
"id \n",
"0 -0.002350 59 0.766739 -1.350460 42.2727 16.68570 30.3599 \n",
"1 0.784462 145 -0.463845 -0.530421 27324.9000 3.47545 160.4980 \n",
"2 0.317816 19 -0.432571 -0.382644 1383.2600 19.71290 31.1026 \n",
"3 0.210753 17 -0.616454 0.946362 -119.2530 4.08235 185.2570 \n",
"4 0.439671 20 0.968126 -0.092546 74.3020 12.30650 72.1860 \n",
"\n",
" f7 f8 f9 ... f91 f92 f93 \\\n",
"id ... \n",
"0 1.267300 0.392007 1.09101 ... -42.43990 26.854000 1.45751 \n",
"1 0.828007 3.735860 1.28138 ... -184.13200 7.901370 1.70644 \n",
"2 -0.515354 34.430800 1.24210 ... 7.43721 37.218100 3.25339 \n",
"3 1.383310 -47.521400 1.09130 ... 9.66778 0.626942 1.49425 \n",
"4 -0.233964 24.399100 1.10151 ... 290.65700 15.604300 1.73557 \n",
"\n",
" f94 f95 f96 f97 f98 f99 loss \n",
"id \n",
"0 0.696161 0.941764 1.828470 0.924090 2.29658 10.48980 15 \n",
"1 -0.494699 -2.058300 0.819184 0.439152 2.36470 1.14383 3 \n",
"2 0.337934 0.615037 2.216760 0.745268 1.69679 12.30550 6 \n",
"3 0.517513 -10.222100 2.627310 0.617270 1.45645 10.02880 2 \n",
"4 -0.476668 1.390190 2.195740 0.826987 1.78485 7.07197 1 \n",
"\n",
"[5 rows x 101 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "bff405b4",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.563866Z",
"iopub.status.busy": "2021-08-31T02:21:37.562655Z",
"iopub.status.idle": "2021-08-31T02:21:37.638269Z",
"shell.execute_reply": "2021-08-31T02:21:37.637684Z",
"shell.execute_reply.started": "2021-08-31T01:56:29.497411Z"
},
"papermill": {
"duration": 0.121245,
"end_time": "2021-08-31T02:21:37.638419",
"exception": false,
"start_time": "2021-08-31T02:21:37.517174",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"#Split the target and featues\n",
"y = train['loss']\n",
"f = train.drop(['loss'],axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8adf7b7e",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.683308Z",
"iopub.status.busy": "2021-08-31T02:21:37.682445Z",
"iopub.status.idle": "2021-08-31T02:21:37.688669Z",
"shell.execute_reply": "2021-08-31T02:21:37.688160Z",
"shell.execute_reply.started": "2021-08-31T01:56:31.268622Z"
},
"papermill": {
"duration": 0.0308,
"end_time": "2021-08-31T02:21:37.688809",
"exception": false,
"start_time": "2021-08-31T02:21:37.658009",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"id\n",
"0 15\n",
"1 3\n",
"2 6\n",
"3 2\n",
"4 1\n",
"Name: loss, dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4c1b0df3",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.735877Z",
"iopub.status.busy": "2021-08-31T02:21:37.734789Z",
"iopub.status.idle": "2021-08-31T02:21:37.740925Z",
"shell.execute_reply": "2021-08-31T02:21:37.740390Z",
"shell.execute_reply.started": "2021-08-31T01:56:32.852938Z"
},
"papermill": {
"duration": 0.03251,
"end_time": "2021-08-31T02:21:37.741089",
"exception": false,
"start_time": "2021-08-31T02:21:37.708579",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"f0 float64\n",
"f1 int64\n",
"f2 float64\n",
"f3 float64\n",
"f4 float64\n",
" ... \n",
"f95 float64\n",
"f96 float64\n",
"f97 float64\n",
"f98 float64\n",
"f99 float64\n",
"Length: 100, dtype: object"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ad7a8df4",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.794148Z",
"iopub.status.busy": "2021-08-31T02:21:37.793203Z",
"iopub.status.idle": "2021-08-31T02:21:37.797513Z",
"shell.execute_reply": "2021-08-31T02:21:37.798155Z",
"shell.execute_reply.started": "2021-08-31T01:56:39.169217Z"
},
"papermill": {
"duration": 0.036938,
"end_time": "2021-08-31T02:21:37.798315",
"exception": false,
"start_time": "2021-08-31T02:21:37.761377",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of catagorical features 0\n",
"number of catagorical features 100\n"
]
}
],
"source": [
"#Check if we have any catagorical columns\n",
"cat_col = [c for c in f.columns if f[c].dtype =='object']\n",
"print(f\"number of catagorical features {len(cat_col)}\")\n",
"#check number of numeric features\n",
"num_col = [c for c in f.columns if f[c].dtype in ['int64','float64']]\n",
"print(f\"number of catagorical features {len(num_col)}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "56575de1",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:37.918451Z",
"iopub.status.busy": "2021-08-31T02:21:37.916986Z",
"iopub.status.idle": "2021-08-31T02:21:38.087499Z",
"shell.execute_reply": "2021-08-31T02:21:38.086941Z",
"shell.execute_reply.started": "2021-08-31T01:56:59.561003Z"
},
"papermill": {
"duration": 0.26906,
"end_time": "2021-08-31T02:21:38.087664",
"exception": false,
"start_time": "2021-08-31T02:21:37.818604",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"#Make a copy of the original data\n",
"X = f[num_col].copy()\n",
"X_test = test[num_col].copy()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "660c5577",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:38.133713Z",
"iopub.status.busy": "2021-08-31T02:21:38.132980Z",
"iopub.status.idle": "2021-08-31T02:21:38.140854Z",
"shell.execute_reply": "2021-08-31T02:21:38.138372Z",
"shell.execute_reply.started": "2021-08-31T01:57:02.905403Z"
},
"papermill": {
"duration": 0.032895,
"end_time": "2021-08-31T02:21:38.141561",
"exception": false,
"start_time": "2021-08-31T02:21:38.108666",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"#Data preprocessing\n",
"preprocessor = ColumnTransformer([('num',StandardScaler(),num_col)])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f5a7de73",
"metadata": {
"papermill": {
"duration": 0.047306,
"end_time": "2021-08-31T02:21:38.235552",
"exception": false,
"start_time": "2021-08-31T02:21:38.188246",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9d04b23e",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:38.327237Z",
"iopub.status.busy": "2021-08-31T02:21:38.326225Z",
"iopub.status.idle": "2021-08-31T02:21:38.650033Z",
"shell.execute_reply": "2021-08-31T02:21:38.651102Z",
"shell.execute_reply.started": "2021-08-31T01:57:06.625266Z"
},
"papermill": {
"duration": 0.376024,
"end_time": "2021-08-31T02:21:38.651429",
"exception": false,
"start_time": "2021-08-31T02:21:38.275405",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"#Train test split\n",
"X_t,X_v,y_t,y_v = train_test_split(X,y, train_size = 0.8,test_size = 0.2 ,random_state =10)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0019c4a4",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-08-31T02:21:38.737055Z",
"iopub.status.busy": "2021-08-31T02:21:38.734747Z",
"iopub.status.idle": "2021-08-31T02:21:38.738125Z",
"shell.execute_reply": "2021-08-31T02:21:38.739026Z",
"shell.execute_reply.started": "2021-08-31T02:16:56.395729Z"
},
"jupyter": {
"outputs_hidden": true
},
"papermill": {
"duration": 0.04851,
"end_time": "2021-08-31T02:21:38.739297",
"exception": false,
"start_time": "2021-08-31T02:21:38.690787",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# #Find the best model by trying value in the parameter tuning\n",
"# # l = list(np.arange(0.0,1,0.05))\n",
"# l = list(range(0,100,5))\n",
"# all_value={}\n",
"# for n in l:\n",
"# model = XGBRegressor(\n",
"# # verbosity = 0,\n",
"# n_estimators = 5000,\n",
"# max_debth = 3,#5,\n",
"# learning_rate = 0.05,#0.12,\n",
"# n_jobs = -1, #10,\n",
"# random_state = 95,#10, #30,\n",
"# colsample_bytree = 0.4,#0.85,\n",
"# subsample = 0.85,#0.6,#0.9,\n",
"# booster='gbtree',\n",
"# reg_lambda= 50,#30,\n",
"# reg_alpha=30,\n",
"# tree_method = 'gpu_hist', # optimizer\n",
"# predictor = 'gpu_predictor', #Make prediction faster\n",
"# gamma = n\n",
"# )\n",
"\n",
"# #Define Pipeline\n",
"# pipe = Pipeline(steps = [('preprocessor',preprocessor),('model',model)])\n",
"\n",
"# pipe[0].fit(X_t)\n",
"\n",
"# fit_param = {\"model__eval_set\":[(pipe[0].transform(X_v),y_v)],\n",
"# \"model__early_stopping_rounds\":7}\n",
"# pipe.fit(X_t,y_t,**fit_param)\n",
"# predict_value = pipe.predict(X_v)\n",
"# all_value[n]=mean_squared_error(predict_value,y_v)\n",
"# print(\"Mean Square Error:\", mean_squared_error(predict_value,y_v))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b22f30d9",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:38.813785Z",
"iopub.status.busy": "2021-08-31T02:21:38.811975Z",
"iopub.status.idle": "2021-08-31T02:21:38.815319Z",
"shell.execute_reply": "2021-08-31T02:21:38.815886Z",
"shell.execute_reply.started": "2021-08-31T02:18:42.490189Z"
},
"papermill": {
"duration": 0.038944,
"end_time": "2021-08-31T02:21:38.816119",
"exception": false,
"start_time": "2021-08-31T02:21:38.777175",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# min(all_value, key = all_value.get)"
]
},
{
"cell_type": "markdown",
"id": "692cefeb",
"metadata": {
"papermill": {
"duration": 0.021721,
"end_time": "2021-08-31T02:21:38.859871",
"exception": false,
"start_time": "2021-08-31T02:21:38.838150",
"status": "completed"
},
"tags": []
},
"source": [
"0.05: 61.09175065659344,\\n\n",
"95: 61.01755668117088 \\n\n",
"0.4: 61.003202057629714,\n",
"0.8500000000000001: 61.003202057629714,"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7dc4b16f",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:21:38.910367Z",
"iopub.status.busy": "2021-08-31T02:21:38.908280Z",
"iopub.status.idle": "2021-08-31T02:21:38.911531Z",
"shell.execute_reply": "2021-08-31T02:21:38.912118Z",
"shell.execute_reply.started": "2021-08-31T02:18:42.498096Z"
},
"papermill": {
"duration": 0.030464,
"end_time": "2021-08-31T02:21:38.912290",
"exception": false,
"start_time": "2021-08-31T02:21:38.881826",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"# all_value"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9ac878df",
"metadata": {
"collapsed": true,
"execution": {
"iopub.execute_input": "2021-08-31T02:21:39.028803Z",
"iopub.status.busy": "2021-08-31T02:21:39.023119Z",
"iopub.status.idle": "2021-08-31T02:33:34.219403Z",
"shell.execute_reply": "2021-08-31T02:33:34.219848Z"
},
"jupyter": {
"outputs_hidden": true
},
"papermill": {
"duration": 715.286757,
"end_time": "2021-08-31T02:33:34.220133",
"exception": false,
"start_time": "2021-08-31T02:21:38.933376",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[02:21:41] WARNING: ../src/learner.cc:573: \n",
"Parameters: { \"max_debth\" } might not be used.\n",
"\n",
" This may not be accurate due to some parameters are only used in language bindings but\n",
" passed down to XGBoost core. Or some parameters are not used but slip through this\n",
" verification. Please open an issue if you find above cases.\n",
"\n",
"\n",
"[0]\tvalidation_0-rmse:9.88475\n",
"[1]\tvalidation_0-rmse:9.70673\n",
"[2]\tvalidation_0-rmse:9.54343\n",
"[3]\tvalidation_0-rmse:9.39425\n",
"[4]\tvalidation_0-rmse:9.25620\n",
"[5]\tvalidation_0-rmse:9.13021\n",
"[6]\tvalidation_0-rmse:9.01498\n",
"[7]\tvalidation_0-rmse:8.91062\n",
"[8]\tvalidation_0-rmse:8.81463\n",
"[9]\tvalidation_0-rmse:8.72713\n",
"[10]\tvalidation_0-rmse:8.64734\n",
"[11]\tvalidation_0-rmse:8.57478\n",
"[12]\tvalidation_0-rmse:8.50863\n",
"[13]\tvalidation_0-rmse:8.44850\n",
"[14]\tvalidation_0-rmse:8.39371\n",
"[15]\tvalidation_0-rmse:8.34413\n",
"[16]\tvalidation_0-rmse:8.29889\n",
"[17]\tvalidation_0-rmse:8.25792\n",
"[18]\tvalidation_0-rmse:8.22078\n",
"[19]\tvalidation_0-rmse:8.18727\n",
"[20]\tvalidation_0-rmse:8.15705\n",
"[21]\tvalidation_0-rmse:8.12902\n",
"[22]\tvalidation_0-rmse:8.10359\n",
"[23]\tvalidation_0-rmse:8.08081\n",
"[24]\tvalidation_0-rmse:8.06059\n",
"[25]\tvalidation_0-rmse:8.04184\n",
"[26]\tvalidation_0-rmse:8.02473\n",
"[27]\tvalidation_0-rmse:8.00939\n",
"[28]\tvalidation_0-rmse:7.99575\n",
"[29]\tvalidation_0-rmse:7.98298\n",
"[30]\tvalidation_0-rmse:7.97172\n",
"[31]\tvalidation_0-rmse:7.96130\n",
"[32]\tvalidation_0-rmse:7.95202\n",
"[33]\tvalidation_0-rmse:7.94349\n",
"[34]\tvalidation_0-rmse:7.93589\n",
"[35]\tvalidation_0-rmse:7.92874\n",
"[36]\tvalidation_0-rmse:7.92210\n",
"[37]\tvalidation_0-rmse:7.91627\n",
"[38]\tvalidation_0-rmse:7.91122\n",
"[39]\tvalidation_0-rmse:7.90643\n",
"[40]\tvalidation_0-rmse:7.90209\n",
"[41]\tvalidation_0-rmse:7.89838\n",
"[42]\tvalidation_0-rmse:7.89493\n",
"[43]\tvalidation_0-rmse:7.89172\n",
"[44]\tvalidation_0-rmse:7.88872\n",
"[45]\tvalidation_0-rmse:7.88596\n",
"[46]\tvalidation_0-rmse:7.88356\n",
"[47]\tvalidation_0-rmse:7.88129\n",
"[48]\tvalidation_0-rmse:7.87914\n",
"[49]\tvalidation_0-rmse:7.87732\n",
"[50]\tvalidation_0-rmse:7.87573\n",
"[51]\tvalidation_0-rmse:7.87415\n",
"[52]\tvalidation_0-rmse:7.87268\n",
"[53]\tvalidation_0-rmse:7.87114\n",
"[54]\tvalidation_0-rmse:7.86973\n",
"[55]\tvalidation_0-rmse:7.86874\n",
"[56]\tvalidation_0-rmse:7.86758\n",
"[57]\tvalidation_0-rmse:7.86652\n",
"[58]\tvalidation_0-rmse:7.86544\n",
"[59]\tvalidation_0-rmse:7.86454\n",
"[60]\tvalidation_0-rmse:7.86367\n",
"[61]\tvalidation_0-rmse:7.86287\n",
"[62]\tvalidation_0-rmse:7.86214\n",
"[63]\tvalidation_0-rmse:7.86134\n",
"[64]\tvalidation_0-rmse:7.86072\n",
"[65]\tvalidation_0-rmse:7.85996\n",
"[66]\tvalidation_0-rmse:7.85929\n",
"[67]\tvalidation_0-rmse:7.85866\n",
"[68]\tvalidation_0-rmse:7.85809\n",
"[69]\tvalidation_0-rmse:7.85759\n",
"[70]\tvalidation_0-rmse:7.85708\n",
"[71]\tvalidation_0-rmse:7.85639\n",
"[72]\tvalidation_0-rmse:7.85590\n",
"[73]\tvalidation_0-rmse:7.85548\n",
"[74]\tvalidation_0-rmse:7.85498\n",
"[75]\tvalidation_0-rmse:7.85459\n",
"[76]\tvalidation_0-rmse:7.85405\n",
"[77]\tvalidation_0-rmse:7.85370\n",
"[78]\tvalidation_0-rmse:7.85322\n",
"[79]\tvalidation_0-rmse:7.85280\n",
"[80]\tvalidation_0-rmse:7.85253\n",
"[81]\tvalidation_0-rmse:7.85229\n",
"[82]\tvalidation_0-rmse:7.85186\n",
"[83]\tvalidation_0-rmse:7.85157\n",
"[84]\tvalidation_0-rmse:7.85136\n",
"[85]\tvalidation_0-rmse:7.85124\n",
"[86]\tvalidation_0-rmse:7.85078\n",
"[87]\tvalidation_0-rmse:7.85037\n",
"[88]\tvalidation_0-rmse:7.85011\n",
"[89]\tvalidation_0-rmse:7.84983\n",
"[90]\tvalidation_0-rmse:7.84949\n",
"[91]\tvalidation_0-rmse:7.84915\n",
"[92]\tvalidation_0-rmse:7.84875\n",
"[93]\tvalidation_0-rmse:7.84846\n",
"[94]\tvalidation_0-rmse:7.84811\n",
"[95]\tvalidation_0-rmse:7.84792\n",
"[96]\tvalidation_0-rmse:7.84766\n",
"[97]\tvalidation_0-rmse:7.84749\n",
"[98]\tvalidation_0-rmse:7.84731\n",
"[99]\tvalidation_0-rmse:7.84692\n",
"[100]\tvalidation_0-rmse:7.84657\n",
"[101]\tvalidation_0-rmse:7.84628\n",
"[102]\tvalidation_0-rmse:7.84577\n",
"[103]\tvalidation_0-rmse:7.84559\n",
"[104]\tvalidation_0-rmse:7.84534\n",
"[105]\tvalidation_0-rmse:7.84516\n",
"[106]\tvalidation_0-rmse:7.84481\n",
"[107]\tvalidation_0-rmse:7.84455\n",
"[108]\tvalidation_0-rmse:7.84463\n",
"[109]\tvalidation_0-rmse:7.84422\n",
"[110]\tvalidation_0-rmse:7.84404\n",
"[111]\tvalidation_0-rmse:7.84370\n",
"[112]\tvalidation_0-rmse:7.84334\n",
"[113]\tvalidation_0-rmse:7.84314\n",
"[114]\tvalidation_0-rmse:7.84289\n",
"[115]\tvalidation_0-rmse:7.84263\n",
"[116]\tvalidation_0-rmse:7.84232\n",
"[117]\tvalidation_0-rmse:7.84216\n",
"[118]\tvalidation_0-rmse:7.84172\n",
"[119]\tvalidation_0-rmse:7.84145\n",
"[120]\tvalidation_0-rmse:7.84125\n",
"[121]\tvalidation_0-rmse:7.84114\n",
"[122]\tvalidation_0-rmse:7.84072\n",
"[123]\tvalidation_0-rmse:7.84066\n",
"[124]\tvalidation_0-rmse:7.84029\n",
"[125]\tvalidation_0-rmse:7.83997\n",
"[126]\tvalidation_0-rmse:7.83983\n",
"[127]\tvalidation_0-rmse:7.83956\n",
"[128]\tvalidation_0-rmse:7.83933\n",
"[129]\tvalidation_0-rmse:7.83923\n",
"[130]\tvalidation_0-rmse:7.83901\n",
"[131]\tvalidation_0-rmse:7.83891\n",
"[132]\tvalidation_0-rmse:7.83866\n",
"[133]\tvalidation_0-rmse:7.83833\n",
"[134]\tvalidation_0-rmse:7.83813\n",
"[135]\tvalidation_0-rmse:7.83808\n",
"[136]\tvalidation_0-rmse:7.83790\n",
"[137]\tvalidation_0-rmse:7.83760\n",
"[138]\tvalidation_0-rmse:7.83737\n",
"[139]\tvalidation_0-rmse:7.83716\n",
"[140]\tvalidation_0-rmse:7.83712\n",
"[141]\tvalidation_0-rmse:7.83681\n",
"[142]\tvalidation_0-rmse:7.83652\n",
"[143]\tvalidation_0-rmse:7.83636\n",
"[144]\tvalidation_0-rmse:7.83609\n",
"[145]\tvalidation_0-rmse:7.83598\n",
"[146]\tvalidation_0-rmse:7.83585\n",
"[147]\tvalidation_0-rmse:7.83555\n",
"[148]\tvalidation_0-rmse:7.83542\n",
"[149]\tvalidation_0-rmse:7.83513\n",
"[150]\tvalidation_0-rmse:7.83475\n",
"[151]\tvalidation_0-rmse:7.83430\n",
"[152]\tvalidation_0-rmse:7.83403\n",
"[153]\tvalidation_0-rmse:7.83372\n",
"[154]\tvalidation_0-rmse:7.83330\n",
"[155]\tvalidation_0-rmse:7.83315\n",
"[156]\tvalidation_0-rmse:7.83306\n",
"[157]\tvalidation_0-rmse:7.83289\n",
"[158]\tvalidation_0-rmse:7.83269\n",
"[159]\tvalidation_0-rmse:7.83247\n",
"[160]\tvalidation_0-rmse:7.83239\n",
"[161]\tvalidation_0-rmse:7.83235\n",
"[162]\tvalidation_0-rmse:7.83248\n",
"[163]\tvalidation_0-rmse:7.83218\n",
"[164]\tvalidation_0-rmse:7.83177\n",
"[165]\tvalidation_0-rmse:7.83153\n",
"[166]\tvalidation_0-rmse:7.83131\n",
"[167]\tvalidation_0-rmse:7.83105\n",
"[168]\tvalidation_0-rmse:7.83095\n",
"[169]\tvalidation_0-rmse:7.83080\n",
"[170]\tvalidation_0-rmse:7.83082\n",
"[171]\tvalidation_0-rmse:7.83068\n",
"[172]\tvalidation_0-rmse:7.83039\n",
"[173]\tvalidation_0-rmse:7.83028\n",
"[174]\tvalidation_0-rmse:7.83015\n",
"[175]\tvalidation_0-rmse:7.83017\n",
"[176]\tvalidation_0-rmse:7.83001\n",
"[177]\tvalidation_0-rmse:7.83008\n",
"[178]\tvalidation_0-rmse:7.82989\n",
"[179]\tvalidation_0-rmse:7.82967\n",
"[180]\tvalidation_0-rmse:7.82946\n",
"[181]\tvalidation_0-rmse:7.82931\n",
"[182]\tvalidation_0-rmse:7.82907\n",
"[183]\tvalidation_0-rmse:7.82887\n",
"[184]\tvalidation_0-rmse:7.82887\n",
"[185]\tvalidation_0-rmse:7.82857\n",
"[186]\tvalidation_0-rmse:7.82820\n",
"[187]\tvalidation_0-rmse:7.82814\n",
"[188]\tvalidation_0-rmse:7.82804\n",
"[189]\tvalidation_0-rmse:7.82800\n",
"[190]\tvalidation_0-rmse:7.82789\n",
"[191]\tvalidation_0-rmse:7.82774\n",
"[192]\tvalidation_0-rmse:7.82757\n",
"[193]\tvalidation_0-rmse:7.82737\n",
"[194]\tvalidation_0-rmse:7.82728\n",
"[195]\tvalidation_0-rmse:7.82718\n",
"[196]\tvalidation_0-rmse:7.82712\n",
"[197]\tvalidation_0-rmse:7.82703\n",
"[198]\tvalidation_0-rmse:7.82685\n",
"[199]\tvalidation_0-rmse:7.82677\n",
"[200]\tvalidation_0-rmse:7.82688\n",
"[201]\tvalidation_0-rmse:7.82682\n",
"[202]\tvalidation_0-rmse:7.82681\n",
"[203]\tvalidation_0-rmse:7.82660\n",
"[204]\tvalidation_0-rmse:7.82643\n",
"[205]\tvalidation_0-rmse:7.82619\n",
"[206]\tvalidation_0-rmse:7.82612\n",
"[207]\tvalidation_0-rmse:7.82597\n",
"[208]\tvalidation_0-rmse:7.82580\n",
"[209]\tvalidation_0-rmse:7.82557\n",
"[210]\tvalidation_0-rmse:7.82564\n",
"[211]\tvalidation_0-rmse:7.82565\n",
"[212]\tvalidation_0-rmse:7.82568\n",
"[213]\tvalidation_0-rmse:7.82552\n",
"[214]\tvalidation_0-rmse:7.82545\n",
"[215]\tvalidation_0-rmse:7.82521\n",
"[216]\tvalidation_0-rmse:7.82522\n",
"[217]\tvalidation_0-rmse:7.82532\n",
"[218]\tvalidation_0-rmse:7.82519\n",
"[219]\tvalidation_0-rmse:7.82494\n",
"[220]\tvalidation_0-rmse:7.82471\n",
"[221]\tvalidation_0-rmse:7.82462\n",
"[222]\tvalidation_0-rmse:7.82452\n",
"[223]\tvalidation_0-rmse:7.82443\n",
"[224]\tvalidation_0-rmse:7.82442\n",
"[225]\tvalidation_0-rmse:7.82450\n",
"[226]\tvalidation_0-rmse:7.82461\n",
"[227]\tvalidation_0-rmse:7.82442\n",
"[228]\tvalidation_0-rmse:7.82430\n",
"[229]\tvalidation_0-rmse:7.82430\n",
"[230]\tvalidation_0-rmse:7.82421\n",
"[231]\tvalidation_0-rmse:7.82424\n",
"[232]\tvalidation_0-rmse:7.82399\n",
"[233]\tvalidation_0-rmse:7.82399\n",
"[234]\tvalidation_0-rmse:7.82368\n",
"[235]\tvalidation_0-rmse:7.82356\n",
"[236]\tvalidation_0-rmse:7.82345\n",
"[237]\tvalidation_0-rmse:7.82345\n",
"[238]\tvalidation_0-rmse:7.82350\n",
"[239]\tvalidation_0-rmse:7.82322\n",
"[240]\tvalidation_0-rmse:7.82304\n",
"[241]\tvalidation_0-rmse:7.82306\n",
"[242]\tvalidation_0-rmse:7.82294\n",
"[243]\tvalidation_0-rmse:7.82290\n",
"[244]\tvalidation_0-rmse:7.82274\n",
"[245]\tvalidation_0-rmse:7.82256\n",
"[246]\tvalidation_0-rmse:7.82231\n",
"[247]\tvalidation_0-rmse:7.82230\n",
"[248]\tvalidation_0-rmse:7.82215\n",
"[249]\tvalidation_0-rmse:7.82194\n",
"[250]\tvalidation_0-rmse:7.82190\n",
"[251]\tvalidation_0-rmse:7.82171\n",
"[252]\tvalidation_0-rmse:7.82171\n",
"[253]\tvalidation_0-rmse:7.82169\n",
"[254]\tvalidation_0-rmse:7.82159\n",
"[255]\tvalidation_0-rmse:7.82167\n",
"[256]\tvalidation_0-rmse:7.82153\n",
"[257]\tvalidation_0-rmse:7.82147\n",
"[258]\tvalidation_0-rmse:7.82153\n",
"[259]\tvalidation_0-rmse:7.82141\n",
"[260]\tvalidation_0-rmse:7.82138\n",
"[261]\tvalidation_0-rmse:7.82123\n",
"[262]\tvalidation_0-rmse:7.82105\n",
"[263]\tvalidation_0-rmse:7.82094\n",
"[264]\tvalidation_0-rmse:7.82088\n",
"[265]\tvalidation_0-rmse:7.82061\n",
"[266]\tvalidation_0-rmse:7.82048\n",
"[267]\tvalidation_0-rmse:7.82037\n",
"[268]\tvalidation_0-rmse:7.82014\n",
"[269]\tvalidation_0-rmse:7.82017\n",
"[270]\tvalidation_0-rmse:7.81998\n",
"[271]\tvalidation_0-rmse:7.82003\n",
"[272]\tvalidation_0-rmse:7.81983\n",
"[273]\tvalidation_0-rmse:7.81984\n",
"[274]\tvalidation_0-rmse:7.81971\n",
"[275]\tvalidation_0-rmse:7.81973\n",
"[276]\tvalidation_0-rmse:7.81942\n",
"[277]\tvalidation_0-rmse:7.81929\n",
"[278]\tvalidation_0-rmse:7.81921\n",
"[279]\tvalidation_0-rmse:7.81904\n",
"[280]\tvalidation_0-rmse:7.81902\n",
"[281]\tvalidation_0-rmse:7.81890\n",
"[282]\tvalidation_0-rmse:7.81888\n",
"[283]\tvalidation_0-rmse:7.81871\n",
"[284]\tvalidation_0-rmse:7.81870\n",
"[285]\tvalidation_0-rmse:7.81869\n",
"[286]\tvalidation_0-rmse:7.81872\n",
"[287]\tvalidation_0-rmse:7.81863\n",
"[288]\tvalidation_0-rmse:7.81854\n",
"[289]\tvalidation_0-rmse:7.81846\n",
"[290]\tvalidation_0-rmse:7.81840\n",
"[291]\tvalidation_0-rmse:7.81834\n",
"[292]\tvalidation_0-rmse:7.81836\n",
"[293]\tvalidation_0-rmse:7.81837\n",
"[294]\tvalidation_0-rmse:7.81834\n",
"[295]\tvalidation_0-rmse:7.81822\n",
"[296]\tvalidation_0-rmse:7.81818\n",
"[297]\tvalidation_0-rmse:7.81801\n",
"[298]\tvalidation_0-rmse:7.81780\n",
"[299]\tvalidation_0-rmse:7.81774\n",
"[300]\tvalidation_0-rmse:7.81769\n",
"[301]\tvalidation_0-rmse:7.81770\n",
"[302]\tvalidation_0-rmse:7.81756\n",
"[303]\tvalidation_0-rmse:7.81745\n",
"[304]\tvalidation_0-rmse:7.81748\n",
"[305]\tvalidation_0-rmse:7.81749\n",
"[306]\tvalidation_0-rmse:7.81748\n",
"[307]\tvalidation_0-rmse:7.81742\n",
"[308]\tvalidation_0-rmse:7.81747\n",
"[309]\tvalidation_0-rmse:7.81728\n",
"[310]\tvalidation_0-rmse:7.81712\n",
"[311]\tvalidation_0-rmse:7.81719\n",
"[312]\tvalidation_0-rmse:7.81722\n",
"[313]\tvalidation_0-rmse:7.81710\n",
"[314]\tvalidation_0-rmse:7.81694\n",
"[315]\tvalidation_0-rmse:7.81685\n",
"[316]\tvalidation_0-rmse:7.81680\n",
"[317]\tvalidation_0-rmse:7.81687\n",
"[318]\tvalidation_0-rmse:7.81689\n",
"[319]\tvalidation_0-rmse:7.81692\n",
"[320]\tvalidation_0-rmse:7.81681\n",
"[321]\tvalidation_0-rmse:7.81668\n",
"[322]\tvalidation_0-rmse:7.81668\n",
"[323]\tvalidation_0-rmse:7.81658\n",
"[324]\tvalidation_0-rmse:7.81642\n",
"[325]\tvalidation_0-rmse:7.81624\n",
"[326]\tvalidation_0-rmse:7.81621\n",
"[327]\tvalidation_0-rmse:7.81627\n",
"[328]\tvalidation_0-rmse:7.81616\n",
"[329]\tvalidation_0-rmse:7.81627\n",
"[330]\tvalidation_0-rmse:7.81617\n",
"[331]\tvalidation_0-rmse:7.81620\n",
"[332]\tvalidation_0-rmse:7.81620\n",
"[333]\tvalidation_0-rmse:7.81624\n",
"[334]\tvalidation_0-rmse:7.81621\n",
"[335]\tvalidation_0-rmse:7.81612\n",
"[336]\tvalidation_0-rmse:7.81618\n",
"[337]\tvalidation_0-rmse:7.81612\n",
"[338]\tvalidation_0-rmse:7.81608\n",
"[339]\tvalidation_0-rmse:7.81592\n",
"[340]\tvalidation_0-rmse:7.81577\n",
"[341]\tvalidation_0-rmse:7.81557\n",
"[342]\tvalidation_0-rmse:7.81556\n",
"[343]\tvalidation_0-rmse:7.81557\n",
"[344]\tvalidation_0-rmse:7.81546\n",
"[345]\tvalidation_0-rmse:7.81558\n",
"[346]\tvalidation_0-rmse:7.81558\n",
"[347]\tvalidation_0-rmse:7.81546\n",
"[348]\tvalidation_0-rmse:7.81560\n",
"[349]\tvalidation_0-rmse:7.81558\n",
"[350]\tvalidation_0-rmse:7.81557\n",
"[351]\tvalidation_0-rmse:7.81564\n",
"[352]\tvalidation_0-rmse:7.81544\n",
"[353]\tvalidation_0-rmse:7.81542\n",
"[354]\tvalidation_0-rmse:7.81529\n",
"[355]\tvalidation_0-rmse:7.81527\n",
"[356]\tvalidation_0-rmse:7.81520\n",
"[357]\tvalidation_0-rmse:7.81510\n",
"[358]\tvalidation_0-rmse:7.81509\n",
"[359]\tvalidation_0-rmse:7.81505\n",
"[360]\tvalidation_0-rmse:7.81502\n",
"[361]\tvalidation_0-rmse:7.81494\n",
"[362]\tvalidation_0-rmse:7.81503\n",
"[363]\tvalidation_0-rmse:7.81507\n",
"[364]\tvalidation_0-rmse:7.81503\n",
"[365]\tvalidation_0-rmse:7.81501\n",
"[366]\tvalidation_0-rmse:7.81495\n",
"[367]\tvalidation_0-rmse:7.81499\n",
"[368]\tvalidation_0-rmse:7.81485\n",
"[369]\tvalidation_0-rmse:7.81495\n",
"[370]\tvalidation_0-rmse:7.81494\n",
"[371]\tvalidation_0-rmse:7.81501\n",
"[372]\tvalidation_0-rmse:7.81488\n",
"[373]\tvalidation_0-rmse:7.81484\n",
"[374]\tvalidation_0-rmse:7.81480\n",
"[375]\tvalidation_0-rmse:7.81466\n",
"[376]\tvalidation_0-rmse:7.81453\n",
"[377]\tvalidation_0-rmse:7.81444\n",
"[378]\tvalidation_0-rmse:7.81433\n",
"[379]\tvalidation_0-rmse:7.81422\n",
"[380]\tvalidation_0-rmse:7.81424\n",
"[381]\tvalidation_0-rmse:7.81435\n",
"[382]\tvalidation_0-rmse:7.81440\n",
"[383]\tvalidation_0-rmse:7.81437\n",
"[384]\tvalidation_0-rmse:7.81437\n",
"[385]\tvalidation_0-rmse:7.81443\n",
"[386]\tvalidation_0-rmse:7.81448\n",
"Mean Square Error: 61.06204867876849\n"
]
}
],
"source": [
"model = XGBRegressor(\n",
"# verbosity = 0,\n",
" n_estimators = 5000,\n",
" max_debth = 3,#5,\n",
" learning_rate = 0.05,#0.12,\n",
" n_jobs = -1, #10,\n",
" random_state = 95,#10, #30,\n",
" colsample_bytree = 0.4,#0.85,\n",
" subsample = 0.85,#0.6,#0.9,\n",
" booster='gbtree',\n",
" reg_lambda= 50,#30,\n",
" reg_alpha=30,\n",
"# tree_method = 'gpu_hist', # optimizer\n",
"# predictor = 'gpu_predictor', #Make prediction faster\n",
"# gamma = n\n",
" )\n",
"#Define Pipeline\n",
"pipe = Pipeline(steps = [('preprocessor',preprocessor),('model',model)])\n",
"\n",
"pipe[0].fit(X_t)\n",
"\n",
"fit_param = {\"model__eval_set\":[(pipe[0].transform(X_v),y_v)],\n",
" \"model__early_stopping_rounds\":7}\n",
"pipe.fit(X_t,y_t,**fit_param)\n",
"predict_value = pipe.predict(X_v)\n",
"# all_value[n]=mean_squared_error(predict_value,y_v)\n",
"print(\"Mean Square Error:\", mean_squared_error(predict_value,y_v))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "66f7d80e",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:33:34.574882Z",
"iopub.status.busy": "2021-08-31T02:33:34.573312Z",
"iopub.status.idle": "2021-08-31T02:33:36.376252Z",
"shell.execute_reply": "2021-08-31T02:33:36.375621Z"
},
"papermill": {
"duration": 2.00711,
"end_time": "2021-08-31T02:33:36.376408",
"exception": false,
"start_time": "2021-08-31T02:33:34.369298",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"array([7.9851785, 5.2491755, 7.1733794, ..., 6.2271237, 4.3847723,\n",
" 7.240355 ], dtype=float32)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict_test = pipe.predict(X_test)\n",
"predict_test"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b5332c38",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:33:36.682569Z",
"iopub.status.busy": "2021-08-31T02:33:36.681880Z",
"iopub.status.idle": "2021-08-31T02:33:37.114402Z",
"shell.execute_reply": "2021-08-31T02:33:37.113822Z"
},
"papermill": {
"duration": 0.589761,
"end_time": "2021-08-31T02:33:37.114567",
"exception": false,
"start_time": "2021-08-31T02:33:36.524806",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": [
"output = pd.DataFrame({'id': X_test.index,\n",
" 'loss': predict_test})\n",
"output.to_csv('submission.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "8a5aef75",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-31T02:33:37.427693Z",
"iopub.status.busy": "2021-08-31T02:33:37.426438Z",
"iopub.status.idle": "2021-08-31T02:33:37.432181Z",
"shell.execute_reply": "2021-08-31T02:33:37.431616Z"
},
"papermill": {
"duration": 0.168653,
"end_time": "2021-08-31T02:33:37.432330",
"exception": false,
"start_time": "2021-08-31T02:33:37.263677",
"status": "completed"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>250000</td>\n",
" <td>7.985178</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>250001</td>\n",
" <td>5.249176</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>250002</td>\n",
" <td>7.173379</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>250003</td>\n",
" <td>7.389934</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>250004</td>\n",
" <td>7.550790</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149995</th>\n",
" <td>399995</td>\n",
" <td>7.876827</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149996</th>\n",
" <td>399996</td>\n",
" <td>7.302665</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149997</th>\n",
" <td>399997</td>\n",
" <td>6.227124</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149998</th>\n",
" <td>399998</td>\n",
" <td>4.384772</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149999</th>\n",
" <td>399999</td>\n",
" <td>7.240355</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>150000 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" id loss\n",
"0 250000 7.985178\n",
"1 250001 5.249176\n",
"2 250002 7.173379\n",
"3 250003 7.389934\n",
"4 250004 7.550790\n",
"... ... ...\n",
"149995 399995 7.876827\n",
"149996 399996 7.302665\n",
"149997 399997 6.227124\n",
"149998 399998 4.384772\n",
"149999 399999 7.240355\n",
"\n",
"[150000 rows x 2 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c59b011c",
"metadata": {
"papermill": {
"duration": 0.153124,
"end_time": "2021-08-31T02:33:37.735965",
"exception": false,
"start_time": "2021-08-31T02:33:37.582841",
"status": "completed"
},
"tags": []
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"papermill": {
"default_parameters": {},
"duration": 742.077418,
"end_time": "2021-08-31T02:33:39.675097",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2021-08-31T02:21:17.597679",
"version": "2.3.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
| 0073/574/73574504.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"ed2b71e1\",\n \"metadata\": (...TRUNCATED) | 0073/574/73574921.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"787658(...TRUNCATED) | 0073/574/73574960.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"77684340\",\n \"metadata\": (...TRUNCATED) | 0073/575/73575780.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"8b16c7(...TRUNCATED) | 0073/576/73576168.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED) | 0073/576/73576226.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"528c4aec\",\n \"metadata\": (...TRUNCATED) | 0073/576/73576305.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"51aa05(...TRUNCATED) | 0073/576/73576427.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED) | 0073/576/73576571.ipynb | s3://data-agents/kaggle-outputs/sharded/012_00073.jsonl.gz |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 27