Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
text
stringlengths
1.57k
94.7M
id
stringlengths
22
24
file_path
stringclasses
42 values
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"import seaborn as sns\nfrom sklearn.model_selection import KFold\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd \nfrom tqdm import tqdm\nfrom sklearn.preprocessing import OrdinalEncoder, LabelEncoder, StandardScaler\nfrom sklearn.model_selection import train_test_split, RandomizedSearchCV\nfrom sklearn.metrics import accuracy_score, make_scorer\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier, AdaBoostClassifier, IsolationForest, StackingClassifier\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.neighbors import KNeighborsClassifier\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.svm import SVC\nfrom xgboost import XGBClassifier\nfrom catboost import CatBoostClassifier\nfrom lightgbm import LGBMClassifier\nfrom sklearn.model_selection import StratifiedKFold\n\n\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input/titanic'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2023-02-14T16:28:46.348444Z","iopub.execute_input":"2023-02-14T16:28:46.349476Z","iopub.status.idle":"2023-02-14T16:28:47.385632Z","shell.execute_reply.started":"2023-02-14T16:28:46.349385Z","shell.execute_reply":"2023-02-14T16:28:47.383885Z"},"trusted":true},"execution_count":1,"outputs":[{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"<style type='text/css'>\n.datatable table.frame { margin-bottom: 0; }\n.datatable table.frame thead { border-bottom: none; }\n.datatable table.frame tr.coltypes td { color: #FFFFFF; line-height: 6px; padding: 0 0.5em;}\n.datatable .bool { background: #DDDD99; }\n.datatable .object { background: #565656; }\n.datatable .int { background: #5D9E5D; }\n.datatable .float { background: #4040CC; }\n.datatable .str { background: #CC4040; }\n.datatable .time { background: #40CC40; }\n.datatable .row_index { background: var(--jp-border-color3); border-right: 1px solid var(--jp-border-color0); color: var(--jp-ui-font-color3); font-size: 9px;}\n.datatable .frame tbody td { text-align: left; }\n.datatable .frame tr.coltypes .row_index { background: var(--jp-border-color0);}\n.datatable th:nth-child(2) { padding-left: 12px; }\n.datatable .hellipsis { color: var(--jp-cell-editor-border-color);}\n.datatable .vellipsis { background: var(--jp-layout-color0); color: var(--jp-cell-editor-border-color);}\n.datatable .na { color: var(--jp-cell-editor-border-color); font-size: 80%;}\n.datatable .sp { opacity: 0.25;}\n.datatable .footer { font-size: 9px; }\n.datatable .frame_dimensions { background: var(--jp-border-color3); border-top: 1px solid var(--jp-border-color0); color: var(--jp-ui-font-color3); display: inline-block; opacity: 0.6; padding: 1px 10px 1px 5px;}\n</style>\n"},"metadata":{}},{"name":"stdout","text":"/kaggle/input/titanic/train.csv\n/kaggle/input/titanic/test.csv\n/kaggle/input/titanic/gender_submission.csv\n","output_type":"stream"}]},{"cell_type":"code","source":"train = pd.read_csv('/kaggle/input/titanic/train.csv')\ntest = pd.read_csv('/kaggle/input/titanic/test.csv')","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.393375Z","iopub.execute_input":"2023-02-14T16:28:47.393791Z","iopub.status.idle":"2023-02-14T16:28:47.412839Z","shell.execute_reply.started":"2023-02-14T16:28:47.393752Z","shell.execute_reply":"2023-02-14T16:28:47.411020Z"},"trusted":true},"execution_count":2,"outputs":[]},{"cell_type":"markdown","source":"#### Printing the value counts for the train set","metadata":{}},{"cell_type":"code","source":"complete","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:49:33.151322Z","iopub.execute_input":"2023-02-14T16:49:33.151797Z","iopub.status.idle":"2023-02-14T16:49:33.178423Z","shell.execute_reply.started":"2023-02-14T16:49:33.151768Z","shell.execute_reply":"2023-02-14T16:49:33.176421Z"},"trusted":true},"execution_count":24,"outputs":[{"execution_count":24,"output_type":"execute_result","data":{"text/plain":" Survived Pclass Sex Age SibSp Parch Fare \\\nPassengerId \n1 0.0 3 male 22.000000 1 0 7.2500 \n2 1.0 1 female 38.000000 1 0 71.2833 \n3 1.0 3 female 26.000000 0 0 7.9250 \n4 1.0 1 female 35.000000 1 0 53.1000 \n5 0.0 3 male 35.000000 0 0 8.0500 \n... ... ... ... ... ... ... ... \n1305 NaN 3 male 29.881138 0 0 8.0500 \n1306 NaN 1 female 39.000000 0 0 108.9000 \n1307 NaN 3 male 38.500000 0 0 7.2500 \n1308 NaN 3 male 29.881138 0 0 8.0500 \n1309 NaN 3 male 29.881138 1 1 22.3583 \n\n Embarked \nPassengerId \n1 S \n2 C \n3 S \n4 S \n5 S \n... ... \n1305 S \n1306 C \n1307 S \n1308 S \n1309 C \n\n[1309 rows x 8 columns]","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Survived</th>\n <th>Pclass</th>\n <th>Sex</th>\n <th>Age</th>\n <th>SibSp</th>\n <th>Parch</th>\n <th>Fare</th>\n <th>Embarked</th>\n </tr>\n <tr>\n <th>PassengerId</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>0.0</td>\n <td>3</td>\n <td>male</td>\n <td>22.000000</td>\n <td>1</td>\n <td>0</td>\n <td>7.2500</td>\n <td>S</td>\n </tr>\n <tr>\n <th>2</th>\n <td>1.0</td>\n <td>1</td>\n <td>female</td>\n <td>38.000000</td>\n <td>1</td>\n <td>0</td>\n <td>71.2833</td>\n <td>C</td>\n </tr>\n <tr>\n <th>3</th>\n <td>1.0</td>\n <td>3</td>\n <td>female</td>\n <td>26.000000</td>\n <td>0</td>\n <td>0</td>\n <td>7.9250</td>\n <td>S</td>\n </tr>\n <tr>\n <th>4</th>\n <td>1.0</td>\n <td>1</td>\n <td>female</td>\n <td>35.000000</td>\n <td>1</td>\n <td>0</td>\n <td>53.1000</td>\n <td>S</td>\n </tr>\n <tr>\n <th>5</th>\n <td>0.0</td>\n <td>3</td>\n <td>male</td>\n <td>35.000000</td>\n <td>0</td>\n <td>0</td>\n <td>8.0500</td>\n <td>S</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1305</th>\n <td>NaN</td>\n <td>3</td>\n <td>male</td>\n <td>29.881138</td>\n <td>0</td>\n <td>0</td>\n <td>8.0500</td>\n <td>S</td>\n </tr>\n <tr>\n <th>1306</th>\n <td>NaN</td>\n <td>1</td>\n <td>female</td>\n <td>39.000000</td>\n <td>0</td>\n <td>0</td>\n <td>108.9000</td>\n <td>C</td>\n </tr>\n <tr>\n <th>1307</th>\n <td>NaN</td>\n <td>3</td>\n <td>male</td>\n <td>38.500000</td>\n <td>0</td>\n <td>0</td>\n <td>7.2500</td>\n <td>S</td>\n </tr>\n <tr>\n <th>1308</th>\n <td>NaN</td>\n <td>3</td>\n <td>male</td>\n <td>29.881138</td>\n <td>0</td>\n <td>0</td>\n <td>8.0500</td>\n <td>S</td>\n </tr>\n <tr>\n <th>1309</th>\n <td>NaN</td>\n <td>3</td>\n <td>male</td>\n <td>29.881138</td>\n <td>1</td>\n <td>1</td>\n <td>22.3583</td>\n <td>C</td>\n </tr>\n </tbody>\n</table>\n<p>1309 rows × 8 columns</p>\n</div>"},"metadata":{}}]},{"cell_type":"code","source":"for i in train.columns:\n print(train[i].value_counts())","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.414400Z","iopub.execute_input":"2023-02-14T16:28:47.415874Z","iopub.status.idle":"2023-02-14T16:28:47.438461Z","shell.execute_reply.started":"2023-02-14T16:28:47.415816Z","shell.execute_reply":"2023-02-14T16:28:47.437144Z"},"trusted":true},"execution_count":3,"outputs":[{"name":"stdout","text":"1 1\n599 1\n588 1\n589 1\n590 1\n ..\n301 1\n302 1\n303 1\n304 1\n891 1\nName: PassengerId, Length: 891, dtype: int64\n0 549\n1 342\nName: Survived, dtype: int64\n3 491\n1 216\n2 184\nName: Pclass, dtype: int64\nBraund, Mr. Owen Harris 1\nBoulos, Mr. Hanna 1\nFrolicher-Stehli, Mr. Maxmillian 1\nGilinski, Mr. Eliezer 1\nMurdlin, Mr. Joseph 1\n ..\nKelly, Miss. Anna Katherine \"Annie Kate\" 1\nMcCoy, Mr. Bernard 1\nJohnson, Mr. William Cahoone Jr 1\nKeane, Miss. Nora A 1\nDooley, Mr. Patrick 1\nName: Name, Length: 891, dtype: int64\nmale 577\nfemale 314\nName: Sex, dtype: int64\n24.00 30\n22.00 27\n18.00 26\n19.00 25\n28.00 25\n ..\n36.50 1\n55.50 1\n0.92 1\n23.50 1\n74.00 1\nName: Age, Length: 88, dtype: int64\n0 608\n1 209\n2 28\n4 18\n3 16\n8 7\n5 5\nName: SibSp, dtype: int64\n0 678\n1 118\n2 80\n5 5\n3 5\n4 4\n6 1\nName: Parch, dtype: int64\n347082 7\nCA. 2343 7\n1601 7\n3101295 6\nCA 2144 6\n ..\n9234 1\n19988 1\n2693 1\nPC 17612 1\n370376 1\nName: Ticket, Length: 681, dtype: int64\n8.0500 43\n13.0000 42\n7.8958 38\n7.7500 34\n26.0000 31\n ..\n35.0000 1\n28.5000 1\n6.2375 1\n14.0000 1\n10.5167 1\nName: Fare, Length: 248, dtype: int64\nB96 B98 4\nG6 4\nC23 C25 C27 4\nC22 C26 3\nF33 3\n ..\nE34 1\nC7 1\nC54 1\nE36 1\nC148 1\nName: Cabin, Length: 147, dtype: int64\nS 644\nC 168\nQ 77\nName: Embarked, dtype: int64\n","output_type":"stream"}]},{"cell_type":"markdown","source":"#### Joining the train and test data set","metadata":{}},{"cell_type":"code","source":"complete = pd.concat([train, test])","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.442381Z","iopub.execute_input":"2023-02-14T16:28:47.443178Z","iopub.status.idle":"2023-02-14T16:28:47.456140Z","shell.execute_reply.started":"2023-02-14T16:28:47.443129Z","shell.execute_reply":"2023-02-14T16:28:47.454821Z"},"trusted":true},"execution_count":4,"outputs":[]},{"cell_type":"markdown","source":"#### Checking for null and duplicated values","metadata":{}},{"cell_type":"code","source":"complete.duplicated().sum()\ncomplete.isna().sum()","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.457475Z","iopub.execute_input":"2023-02-14T16:28:47.457798Z","iopub.status.idle":"2023-02-14T16:28:47.478585Z","shell.execute_reply.started":"2023-02-14T16:28:47.457770Z","shell.execute_reply":"2023-02-14T16:28:47.477801Z"},"trusted":true},"execution_count":5,"outputs":[{"execution_count":5,"output_type":"execute_result","data":{"text/plain":"PassengerId 0\nSurvived 418\nPclass 0\nName 0\nSex 0\nAge 263\nSibSp 0\nParch 0\nTicket 0\nFare 1\nCabin 1014\nEmbarked 2\ndtype: int64"},"metadata":{}}]},{"cell_type":"markdown","source":"#### Replacing the null values for Age and Fare with mean and null values for Embarked with mode.\n","metadata":{}},{"cell_type":"code","source":"complete['Age'] = complete['Age'].fillna(np.mean(complete.Age))\ncomplete['Fare'] = complete['Fare'].fillna(np.mean(complete.Fare))\ncomplete['Embarked'] = complete['Embarked'].fillna(complete.Embarked.mode()[0])\ncomplete.drop(columns = ['Cabin', 'Name', 'Ticket'], inplace = True)\ncomplete.set_index('PassengerId',inplace = True)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.480195Z","iopub.execute_input":"2023-02-14T16:28:47.480500Z","iopub.status.idle":"2023-02-14T16:28:47.494223Z","shell.execute_reply.started":"2023-02-14T16:28:47.480473Z","shell.execute_reply":"2023-02-14T16:28:47.492468Z"},"trusted":true},"execution_count":6,"outputs":[]},{"cell_type":"code","source":"train = complete[complete.Survived.notnull()]\ntest = complete[complete.Survived.isnull()]","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.497401Z","iopub.execute_input":"2023-02-14T16:28:47.497965Z","iopub.status.idle":"2023-02-14T16:28:47.510708Z","shell.execute_reply.started":"2023-02-14T16:28:47.497919Z","shell.execute_reply":"2023-02-14T16:28:47.509580Z"},"trusted":true},"execution_count":7,"outputs":[]},{"cell_type":"code","source":"train.reset_index(inplace = True)\ntrain.drop(columns = 'PassengerId', inplace = True)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.512174Z","iopub.execute_input":"2023-02-14T16:28:47.512866Z","iopub.status.idle":"2023-02-14T16:28:47.530639Z","shell.execute_reply.started":"2023-02-14T16:28:47.512769Z","shell.execute_reply":"2023-02-14T16:28:47.529204Z"},"trusted":true},"execution_count":8,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.7/site-packages/pandas/core/frame.py:4913: SettingWithCopyWarning: \nA value is trying to be set on a copy of a slice from a DataFrame\n\nSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n errors=errors,\n","output_type":"stream"}]},{"cell_type":"markdown","source":"#### Separating the predictors and traget variable","metadata":{}},{"cell_type":"code","source":"y = train.Survived\ntrain = train.drop(columns = 'Survived')\n","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.532027Z","iopub.execute_input":"2023-02-14T16:28:47.532487Z","iopub.status.idle":"2023-02-14T16:28:47.547140Z","shell.execute_reply.started":"2023-02-14T16:28:47.532449Z","shell.execute_reply":"2023-02-14T16:28:47.545978Z"},"trusted":true},"execution_count":9,"outputs":[]},{"cell_type":"markdown","source":"#### Checking the distribution of the target variable","metadata":{}},{"cell_type":"code","source":"sns.countplot(x=y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.548137Z","iopub.execute_input":"2023-02-14T16:28:47.548464Z","iopub.status.idle":"2023-02-14T16:28:47.692831Z","shell.execute_reply.started":"2023-02-14T16:28:47.548438Z","shell.execute_reply":"2023-02-14T16:28:47.691891Z"},"trusted":true},"execution_count":10,"outputs":[{"execution_count":10,"output_type":"execute_result","data":{"text/plain":"<AxesSubplot:xlabel='Survived', ylabel='count'>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQEUlEQVR4nO3dfazeZX3H8fcHCrKJ8tSOYdutbDQzLCriGeJDMgd7EOYscYIYHRWbdEvYonHOsS2ZD3GLZk4GU3HNUAvZpIhzdIaphIc5jaCnE3lyzjMGoxXt4amKTGfZd3+cqxeHctreLb3vu+W8X8md+/pdv+v3u7+nOTmf/p6uO1WFJEkAB4y7AEnSvsNQkCR1hoIkqTMUJEmdoSBJ6haMu4AnY+HChbVs2bJxlyFJ+5UNGzbcV1WL5lq3X4fCsmXLmJycHHcZkrRfSXL3jtZ5+kiS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLU7ddPNO8NL/iDS8ddgvZBG/7inHGXII2FRwqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUjfUUEhyV5Jbk9ycZLL1HZnkmiTfbO9HtP4kuSjJVJJbkpw4zNokSU80iiOFX6qqE6pqoi2fD1xbVcuBa9sywGnA8vZaDVw8gtokSbOM4/TRCmBta68FzpjVf2nNuBE4PMkxY6hPkuatYYdCAZ9LsiHJ6tZ3dFXd29rfBo5u7cXAPbO23dj6HifJ6iSTSSanp6eHVbckzUvD/jrOl1bVpiQ/AVyT5N9nr6yqSlK7s8OqWgOsAZiYmNitbSVJOzfUI4Wq2tTeNwOfAk4CvrPttFB739yGbwKWztp8SeuTJI3I0EIhydOTPGNbG/hV4DZgPbCyDVsJXNXa64Fz2l1IJwNbZp1mkiSNwDBPHx0NfCrJts/5+6r6TJKvAFckWQXcDZzVxl8NnA5MAY8A5w6xNknSHIYWClV1J/C8OfrvB06do7+A84ZVjyRp13yiWZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEnd0EMhyYFJvprk02352CQ3JZlKsi7Jwa3/aW15qq1fNuzaJEmPN4ojhTcBX5+1/F7ggqo6DngQWNX6VwEPtv4L2jhJ0ggNNRSSLAF+HfjbthzgFODKNmQtcEZrr2jLtPWntvGSpBEZ9pHCXwFvA/6vLR8FPFRVW9vyRmBxay8G7gFo67e08Y+TZHWSySST09PTQyxdkuafoYVCklcAm6tqw97cb1WtqaqJqppYtGjR3ty1JM17C4a475cAr0xyOnAI8EzgQuDwJAva0cASYFMbvwlYCmxMsgA4DLh/iPVJkrYztCOFqvqjqlpSVcuAs4Hrqup1wPXAq9uwlcBVrb2+LdPWX1dVNaz6JElPNI7nFP4QeEuSKWauGVzS+i8Bjmr9bwHOH0NtkjSvDfP0UVdVNwA3tPadwElzjPkBcOYo6pEkzc0nmiVJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpG8mX7Ejaff/9rueMuwTtg37qT28d6v49UpAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpG6gUEhy7SB9kqT9206faE5yCPDjwMIkRwBpq54JLB5ybZKkEdvVNBe/DbwZeBawgcdC4bvAB4ZXliRpHHZ6+qiqLqyqY4G3VtXPVNWx7fW8qtppKCQ5JMmXk3wtye1J3tn6j01yU5KpJOuSHNz6n9aWp9r6ZXvrh5QkDWagCfGq6q+TvBhYNnubqrp0J5v9EDilqh5OchDwhST/DLwFuKCqLk/yYWAVcHF7f7CqjktyNvBe4DV78kNJkvbMoBeaLwPeB7wU+IX2mtjZNjXj4bZ4UHsVcApwZetfC5zR2ivaMm39qUm2na6SJI3AoFNnTwDHV1Xtzs6THMjMtYjjgA8C/wk8VFVb25CNPHbBejFwD0BVbU2yBTgKuG93PlOStOcGfU7hNuAnd3fnVfVoVZ0ALAFOAp69u/vYXpLVSSaTTE5PTz/Z3UmSZhn0SGEhcEeSLzNzrQCAqnrlIBtX1UNJrgdeBByeZEE7WlgCbGrDNgFLgY1JFgCHAffPsa81wBqAiYmJ3TpykSTt3KCh8I7d3XGSRcCPWiD8GPArzFw8vh54NXA5sBK4qm2yvi1/qa2/bndPV0mSnpxB7z76lz3Y9zHA2nZd4QDgiqr6dJI7gMuTvBv4KnBJG38JcFmSKeAB4Ow9+ExJ0pMwUCgk+R4zdw4BHMzMnUTfr6pn7mibqroFeP4c/Xcyc31h+/4fAGcOUo8kaTgGPVJ4xrZ2u010BXDysIqSJI3Hbs+S2p4/+Efg1/Z+OZKkcRr09NGrZi0ewMxzCz8YSkWSpLEZ9O6j35jV3grcxcwpJEnSU8ig1xTOHXYhkqTxG3TuoyVJPpVkc3t9MsmSYRcnSRqtQS80f5SZh8ue1V7/1PokSU8hg4bCoqr6aFVtba+PAYuGWJckaQwGDYX7k7w+yYHt9XrmmJdIkrR/GzQU3gicBXwbuJeZuYneMKSaJEljMugtqe8CVlbVgwBJjmTmS3feOKzCJEmjN+iRwnO3BQJAVT3AHPMaSZL2b4OGwgFJjti20I4UBj3KkCTtJwb9w/6XwJeSfKItnwn82XBKkiSNy6BPNF+aZBI4pXW9qqruGF5ZkqRxGPgUUAsBg0CSnsJ2e+psSdJTl6EgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQNLRSSLE1yfZI7ktye5E2t/8gk1yT5Zns/ovUnyUVJppLckuTEYdUmSZrbMI8UtgK/X1XHAycD5yU5HjgfuLaqlgPXtmWA04Dl7bUauHiItUmS5jC0UKiqe6vq31r7e8DXgcXACmBtG7YWOKO1VwCX1owbgcOTHDOs+iRJTzSSawpJlgHPB24Cjq6qe9uqbwNHt/Zi4J5Zm21sfdvva3WSySST09PTwytakuahoYdCkkOBTwJvrqrvzl5XVQXU7uyvqtZU1URVTSxatGgvVipJGmooJDmImUD4u6r6h9b9nW2nhdr75ta/CVg6a/MlrU+SNCLDvPsowCXA16vq/bNWrQdWtvZK4KpZ/ee0u5BOBrbMOs0kSRqBBUPc90uA3wJuTXJz6/tj4D3AFUlWAXcDZ7V1VwOnA1PAI8C5Q6xNkjSHoYVCVX0ByA5WnzrH+ALOG1Y9kqRd84lmSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHVDC4UkH0myOclts/qOTHJNkm+29yNaf5JclGQqyS1JThxWXZKkHRvmkcLHgJdv13c+cG1VLQeubcsApwHL22s1cPEQ65Ik7cDQQqGqPg88sF33CmBta68FzpjVf2nNuBE4PMkxw6pNkjS3UV9TOLqq7m3tbwNHt/Zi4J5Z4za2vidIsjrJZJLJ6enp4VUqSfPQ2C40V1UBtQfbramqiaqaWLRo0RAqk6T5a9Sh8J1tp4Xa++bWvwlYOmvcktYnSRqhUYfCemBla68ErprVf067C+lkYMus00ySpBFZMKwdJ/k48DJgYZKNwNuB9wBXJFkF3A2c1YZfDZwOTAGPAOcOqy5J0o4NLRSq6rU7WHXqHGMLOG9YtUiSBuMTzZKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnq9qlQSPLyJN9IMpXk/HHXI0nzzT4TCkkOBD4InAYcD7w2yfHjrUqS5pd9JhSAk4Cpqrqzqv4XuBxYMeaaJGleWTDuAmZZDNwza3kj8MLtByVZDaxuiw8n+cYIapsvFgL3jbuIfUHet3LcJejx/N3c5u3ZG3v56R2t2JdCYSBVtQZYM+46noqSTFbVxLjrkLbn7+bo7EunjzYBS2ctL2l9kqQR2ZdC4SvA8iTHJjkYOBtYP+aaJGle2WdOH1XV1iS/C3wWOBD4SFXdPuay5htPy2lf5e/miKSqxl2DJGkfsS+dPpIkjZmhIEnqDIV5aFfTiSR5WpJ1bf1NSZaNoUzNM0k+kmRzktt2sD5JLmq/l7ckOXHUNc4HhsI8M+B0IquAB6vqOOAC4L2jrVLz1MeAl+9k/WnA8vZaDVw8gprmHUNh/hlkOpEVwNrWvhI4NcleeYxS2pGq+jzwwE6GrAAurRk3AocnOWY01c0fhsL8M9d0Iot3NKaqtgJbgKNGUp20Y4P87upJMhQkSZ2hMP8MMp1IH5NkAXAYcP9IqpN2zKlwRsBQmH8GmU5kPbBtmtBXA9eVTzlq/NYD57S7kE4GtlTVveMu6qlmn5nmQqOxo+lEkrwLmKyq9cAlwGVJppi58Hf2+CrWfJHk48DLgIVJNgJvBw4CqKoPA1cDpwNTwCPAueOp9KnNaS4kSZ2njyRJnaEgSeoMBUlSZyhIkjpDQZLUGQoSkORPktzeZt+8OckL98I+XznXLLR7uK+H98Z+pF3xllTNe0leBLwfeFlV/TDJQuDgqvrWANsuaPNDDbvGh6vq0GF/juSRggTHAPdV1Q8Bquq+qvpWkrtaQJBkIskNrf2OJJcl+SIzD/ndmOTnt+0syQ1t/BuSfCDJYUnuTnJAW//0JPckOSjJzyb5TJINSf41ybPbmGOTfCnJrUnePeJ/D81jhoIEnwOWJvmPJB9K8osDbHM88MtV9VpgHXAWQJvK+Ziqmtw2sKq2ADcD2/b7CuCzVfUjZr6Q/veq6gXAW4EPtTEXAhdX1XMAp3LQyBgKmveq6mHgBcx8ccs0sC7JG3ax2fqq+p/WvoKZOaJgJhyunGP8OuA1rX12+4xDgRcDn0hyM/A3zBy1ALwE+HhrX7Y7P4/0ZDj3kQRU1aPADcANSW5lZkLArTz2H6dDttvk+7O23ZTk/iTPZeYP/+/M8RHrgT9PciQzAXQd8HTgoao6YUdl7dlPI+05jxQ07yX5uSTLZ3WdANwN3MXMH3CA39zFbtYBbwMOq6pbtl/Zjka+wsxpoU9X1aNV9V3gv5Kc2epIkue1Tb7IYxMRvm63fyhpDxkKEhwKrE1yR5JbmLle8A7gncCFSSaBR3exjyuZ+SN+xU7GrANe3963eR2wKsnXgNt57KtR3wSc145a/HYxjYy3pEqSOo8UJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHX/DwccBd+2XJtIAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"#### Checking the distribution of categorical predictor variables","metadata":{}},{"cell_type":"code","source":"fig, axes = plt.subplots(nrows=2, ncols = 3, figsize=(10,10))\nfor i, ax in enumerate(axes.flat):\n if i< len(['Pclass', 'Sex', 'SibSp', 'Parch',\n 'Embarked']):\n sns.countplot(x= train[(['Pclass', 'Sex', 'SibSp', 'Parch',\n 'Embarked'][i])], ax= ax)\n ax.set_title(['Pclass', 'Sex', 'SibSp', 'Parch',\n 'Embarked'][i])\n else:\n axes.flat[i].set_visible(False)\nplt.tight_layout()\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:47.694435Z","iopub.execute_input":"2023-02-14T16:28:47.694966Z","iopub.status.idle":"2023-02-14T16:28:48.428565Z","shell.execute_reply.started":"2023-02-14T16:28:47.694932Z","shell.execute_reply":"2023-02-14T16:28:48.426893Z"},"trusted":true},"execution_count":11,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 720x720 with 6 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABLlklEQVR4nO3de7xddX3n/9dbAuIFCUhKkaBhagYHrQJGxOpYhGqFqtCOolYlUtrYKTo62irW/iy9ONXpWERt6VCpBKUiohRqrUoDeBtBgyAIaIkUJBFI5CaKl4Kf3x/7e2ARTuAkZ6+9z855PR+P/Thrfdftu0/yPeu91/6u9U1VIUmSJGngIeOugCRJkjSXGJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBrWkkOTLJ23PWQJGlrkOQVST7bma8kjx9nnbRpBuR5Ism1SX6U5AdJbkpySpJHjrtekrZMkmcl+X9Jbk9yS5IvJXnauOslzXebaptVdVpVPW+G+9guybuTrG3n7WuTvKfnqqvDgDy/vLCqHgnsBywD/mjM9ZG0BZI8Cvgk8D5gZ2B34E+An4yzXtJ8N8S2+VYG5+n9gR2AA4GvDa2ielAG5HmoqtYB/wI8KcnOST6Y5LtJbk3yj9Ntk+TYJN9OckeSK5P8emfZ45N8rn1a/l6Sj7byJDk+yfok309yeZInjeRNSlu3/wxQVR+pqrur6kdV9dmqugwgyW8luaq16c8keVwrf0uSi5IsaPP/PckVSbYf31uRtiqbbJtJXp3kixutf2iSa9q58y+TTOWypwFnVdV3a+Daqjp1aqN2Rfmt7Xx8azuP246HyIA8DyXZAzgUuAT4EPBw4InAzwHHb2KzbwP/FdiRwafhDyfZrS37M+CzwE7AYgafnAGeBzybwR+MHYEjgJuH/Hak+ejfgLuTrExySJKdphYkOQz4Q+A3gEXAF4CPtMV/yeBK1h8lWQr8L+CVVfXjkdZe2nptsm1uwq8zuFK8H3AY8Fut/ELgjUl+L8kvJsk0274C+FXgFxicZ/1WeIgMyPPLPya5Dfgi8Dngb4BDgN+tqlur6j+q6nPTbVhVH2ufZH9WVR8Frmbw1Q/AfwCPAx5TVT+uqi92yncAngCkqq6qqht6e3fSPFFV3weeBRTwd8CGJOck2RX4XeAvWnu7i0EI3ifJ46rqZ8CRwP8AzgH+d1VdMp53IW19HqRtTuddVXVLVX0HeA/w8lb+F8C7GITg1cC6JMs32vb9VXV9Vd0CvKOzrYbAgDy/HF5VC6vqcVX1e8AewC1VdeuDbZjkyCSXJrmthewnAbu0xW8GAnylfV37WwBVdR7wfuCvgfVJTmr9syTNUgvAr66qxQza42MYnGAfB5zQaau3MGifu7ftrgXOB5YwaJuShugB2uZ0ru9MX9fWpXXP+OuqeiawkEEA/vsk/+XBttVwGJDnt+uBnZMsfKCVWv/FvwNeCzy6qhYC32Bw0qWqbqyq36mqxwCvAf5m6tE1VfXeqnoqsDeDr4D+oKf3Is1bVfVN4BQGJ+Prgde0D8NTr4dV1f8DSPJrwDOAVQy6XEjqyUZtczp7dKYfC3x3mn38qKr+GriVwbl0xttqyxmQ57HW3eFfGATanZJsm+TZ06z6CAZfF20ASHIUncae5CVJFrfZW9u6P0vytCRPT7It8EPgx8DP+ntH0vyQ5AlJ3jTV7tp9BS9n0G/xb4G3JnliW7Zjkpe06V2ADwC/DSwHXpjk0HG8B2lr9CBtczp/0M6/ewCvB6Zucn9DBuMRPCzJgta9YgcG9w5NOSbJ4iQ7A2+b2lbDYUDWqxj0Ff4msB54w8YrVNWVwLuBLwM3Ab8IfKmzytOAi5L8gEG/xtdX1TXAoxhceb6Vwdc/N+MVK2kY7gCezqDd/ZDByfcbwJuq6iwGfRdPT/L9Vn5I2+4k4Oyq+lRV3QwcDXwgyaNH/g6krdMm2+Ym1j8buBi4FPhn4ORWfieD8+6NwPeAY4D/1s6tU/6BwQ3y1zC4kf7Ph/lG5rtU1bjrIEmSpBlKci3w21X1r+Ouy9bKK8iSJElShwFZkiRJ6rCLhSRJktThFWRJkiSpY8G4KzAbu+yySy1ZsmTc1ZB6dfHFF3+vqhb1fZz2POwPMHiEXzEY8vRbDB4dtAS4Fjiiqm5tw56ewGDI8juBV1fV1x5o/7ZXzQejaq+jYJvVfLCpNjvRAXnJkiWsXr163NWQepXkuhEd6gTg01X14iTbAQ8H/hBYVVXvTHIscCzwFgaPDVvaXk8HTmw/N8n2qvlghO21d7ZZzQebarN2sZBEkh2BZ9OewVlVP62q24DDgJVttZXA4W36MODUGrgQWJhkt5FWWpKknhiQJQHsyWCkxA8muSTJB5I8Ati1jbgIgwfW79qmd2cwpPGUta3sPpKsSLI6yeoNGzb0WH1JkobHgCwJBt2t9gNOrKp9GQwNfmx3hRo88mazHntTVSdV1bKqWrZo0VbRLVOSNA8YkCXB4Arw2qq6qM2fySAw3zTVdaL9XN+WrwP26Gy/uJVJkjTxeg3ISa5NcnmSS5OsbmU7Jzk3ydXt506tPEnem2RNksuS7Ndn3STdq6puBK5PslcrOhi4EjgHWN7KlgNnt+lzgCNbuz0AuL3TFUOSpIk2iqdYPKeqvteZP5Yh3RUvaaheB5zWnmBxDXAUgw/RZyQ5GrgOOKKt+ykGj3hbw+Axb0eNvrqSJPVjHI95Oww4sE2vBC5gEJDvuSseuDDJwiS7eVVKGo2quhRYNs2ig6dZt4Bj+q6TJEnj0Hcf5AI+m+TiJCtamXfFS5Ikac7q+wrys6pqXZKfA85N8s3uwqqqJJt9VzxwEsCyZcs2a1tJkiTpwfR6Bbmq1rWf64GzgP3xrnhJkiTNYb0F5CSPSLLD1DTwPOAbeFe8JEmS5rA+u1jsCpyVZOo4/1BVn07yVbwrXpIkSXNUbwG5qq4BnjJN+c14V7wkSZLmqHE85k0aqme+75njrsJQfOl1Xxp3FeaEp/7BqeOuwkS4+C+PHHcVNGZJFgIfAJ7E4KlRvwV8C/gosAS4Fjiiqm7N4OvcExh8U3sn8Oqq+tpMj9VHu/T/sOYyh5qWJGkynQB8uqqewOAb26u4dzCupcCqNg/3HYxrBYPBuCRtggFZkqQJk2RH4NnAyQBV9dOquo3BoFsr22orgcPb9D2DcVXVhcDCqSdKSbo/A7IkSZNnT2AD8MEklyT5QHtilINxSUNgQJYkafIsAPYDTqyqfYEfcm93CuCem983ezCuqlpWVcsWLVo0tMpKk8aALEnS5FkLrK2qi9r8mQwCs4NxSUNgQJYkacJU1Y3A9Un2akUHA1fiYFzSUPiYN0mSJtPrgNOSbAdcw2CArYfgYFzSrBmQJUmaQFV1KbBsmkUOxiXNkl0sJEmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiQAklyb5PIklyZZ3cp2TnJukqvbz51aeZK8N8maJJcl2W+8tZckaXgMyJK6nlNV+1TVsjZ/LLCqqpYCq9o8wCHA0vZaAZw48ppKktQTA7KkB3IYsLJNrwQO75SfWgMXAguT7DaG+kmSNHQGZElTCvhskouTrGhlu1bVDW36RmDXNr07cH1n27Wt7D6SrEiyOsnqDRs29FVvSZKGasG4KyBpznhWVa1L8nPAuUm+2V1YVZWkNmeHVXUScBLAsmXLNmtbSZLGxSvIkgCoqnXt53rgLGB/4KaprhPt5/q2+jpgj87mi1uZJEkTz4AsiSSPSLLD1DTwPOAbwDnA8rbacuDsNn0OcGR7msUBwO2drhiSJE00u1hIgkHf4rOSwODvwj9U1aeTfBU4I8nRwHXAEW39TwGHAmuAO4GjRl9lSZL6YUCWRFVdAzxlmvKbgYOnKS/gmBFUTZKkkbOLhSRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5I0gZJcm+TyJJcmWd3Kdk5ybpKr28+dWnmSvDfJmiSXJdlvvLWX5jYDsiRJk+s5VbVPVS1r88cCq6pqKbCqzQMcAixtrxXAiSOvqTRBeg/ISbZJckmST7b5PZNc1D7FfjTJdq38oW1+TVu+pO+6SZK0lTkMWNmmVwKHd8pPrYELgYVTo2RKur9RXEF+PXBVZ/5dwPFV9XjgVuDoVn40cGsrP76tJ0mSplfAZ5NcnGRFK9u1M6rljQwGAQLYHbi+s+3aVnYfSVYkWZ1k9YYNG/qqtzTn9RqQkywGfg34QJsPcBBwZltl40+3U596zwQObutLkqT7e1ZV7ceg+8QxSZ7dXdgG9KnN2WFVnVRVy6pq2aJFi4ZYVWmy9H0F+T3Am4GftflHA7dV1V1tvvsJ9p5Pt2357W39+/DTrSRJUFXr2s/1wFnA/sBNU10n2s/1bfV1wB6dzRe3MknT6C0gJ3kBsL6qLh7mfv10K0ma75I8IskOU9PA84BvAOcAy9tqy4Gz2/Q5wJHtaRYHALd3umJI2siCHvf9TOBFSQ4FtgceBZzA4MaABe0qcfcT7NSn27VJFgA7Ajf3WD9JkibVrsBZrSfiAuAfqurTSb4KnJHkaOA64Ii2/qeAQ4E1wJ3AUaOvsjQ5egvIVfVW4K0ASQ4Efr+qXpHkY8CLgdO5/6fb5cCX2/LzWv8pSZLUUVXXAE+Zpvxm4OBpygs4ZgRVk7YK43gO8luANyZZw6CP8cmt/GTg0a38jdz77EZJkiRpZPrsYnGPqroAuKBNX8PgRoKN1/kx8JJR1EeSJEnaFEfSkyRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJLukWSbJJck+WSb3zPJRUnWJPloku1a+UPb/Jq2fMlYKy5J0hAZkCV1vR64qjP/LuD4qno8cCtwdCs/Gri1lR/f1pMkaatgQJYEQJLFwK8BH2jzAQ4CzmyrrAQOb9OHtXna8oPb+pIkTTwDsqQp7wHeDPyszT8auK2q7mrza4Hd2/TuwPUAbfntbf37SLIiyeokqzds2NBj1SVJGh4DsiSSvABYX1UXD3O/VXVSVS2rqmWLFi0a5q4lSerNgnFXQNKc8EzgRUkOBbYHHgWcACxMsqBdJV4MrGvrrwP2ANYmWQDsCNw8+mpLkjR8XkGWRFW9taoWV9US4GXAeVX1CuB84MVtteXA2W36nDZPW35eVdUIqyxJUm8MyJIeyFuANyZZw6CP8cmt/GTg0a38jcCxY6qfJElDZxcLSfdRVRcAF7Tpa4D9p1nnx8BLRloxSZJGxCvIkiRJUocBWZKkCeXol1I/DMiSJE0uR7+UemBAliRpAjn6pdQfA7IkSZPpPTj6pdQLA7IkSRPG0S+lfvmYN0mSJo+jX0o98gqyJEkTxtEvpX4ZkCVJ2no4+qU0BHaxkCRpgjn6pTR8XkGWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdvQXkJNsn+UqSrye5IsmftPI9k1yUZE2SjybZrpU/tM2vacuX9FU3SZIkaVP6vIL8E+CgqnoKsA/w/CQHAO8Cjq+qxwO3Ake39Y8Gbm3lx7f1JEmSpJHqLSDXwA/a7LbtVcBBwJmtfCVweJs+rM3Tlh+cJH3VT5IkSZpOr32Qk2yT5FJgPXAu8G3gtjYEJsBaYPc2vTtwPUBbfjuDh5xvvM8VSVYnWb1hw4Y+qy9JkqR5qNeAXFV3V9U+DMaD3x94whD2eVJVLauqZYsWLZrt7iRJkqT7GMlTLKrqNgbjwz8DWJhkagS/xcC6Nr0O2AOgLd8RuHkU9ZMkSZKm9PkUi0VJFrbphwHPBa5iEJRf3FZbDpzdps9p87Tl51VV9VU/SZIkaToLHnyVLbYbsDLJNgyC+BlV9ckkVwKnJ/lz4BLg5Lb+ycCHkqwBbgFe1mPdJEmSpGn1FpCr6jJg32nKr2HQH3nj8h8DL+mrPpIkSdJMOJKeJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqSOGQXkJKtmUiZp/Gyv0uSwvUpz0wOOpJdke+DhwC5JdgLSFj0K2L3nuknaDLZXaXLYXqW57cGGmn4N8AbgMcDF3NuAvw+8v79qSdoCtldpcthepTnsAQNyVZ0AnJDkdVX1vhHVSdIWsL1Kk8P2Ks1tD3YFGYCqel+SXwKWdLepqlN7qpekLWR7lSaH7VWam2YUkJN8CPgF4FLg7lZcgA1YmmNsr9pc3/nTXxx3FSbCY99++dD3aXuV5qYZBWRgGbB3VVWflZE0FLZXaXLYXqU5aKbPQf4G8PN9VkTS0Nhepclhe5XmoJleQd4FuDLJV4CfTBVW1Yt6qZWk2bC9SpPD9irNQTMNyMf1WQlJQ3Xc5m7Qnsn6eeChDP4unFlVf5xkT+B04NEMHkX1qqr6aZKHMugj+VTgZuClVXXtcKovzSvHjbsCku5vpk+x+FzfFZE0HFvYXn8CHFRVP0iyLfDFJP8CvBE4vqpOT/K3wNHAie3nrVX1+CQvA94FvHRIb0GaNzy/SnPTTIeaviPJ99vrx0nuTvL9visnafNtSXutgR+02W3bq4CDgDNb+Urg8DZ9WJunLT84ydRAB5JmyPOrNDfN9AryDlPT7SR4GHBAX5WStOW2tL0m2YZBN4rHA38NfBu4raruaqus5d4hcHcHrm/HuyvJ7Qy6YXxvo32uAFYAPPaxj93yNyVtpTy/SnPTTJ9icY92pekfgV8dfnUkDdPmtNequruq9gEWA/sDTxjC8U+qqmVVtWzRokWz3Z20VfP8Ks0dMx0o5Dc6sw9h8NzGH/dSI0mzMtv2WlW3JTkfeAawMMmCdhV5MbCurbYO2ANYm2QBsCODm/UkbQbPr9LcNNOnWLywM30XcC2Dr4EkzT2b3V6TLAL+o4XjhwHPZXDj3fnAixk8yWI5cHbb5Jw2/+W2/DwHOpC2iOdXaQ6aaR/ko/quiKTh2ML2uhuwsvVDfghwRlV9MsmVwOlJ/hy4BDi5rX8y8KEka4BbgJcNoerSvOP5VZqbZtrFYjHwPuCZregLwOuram1fFZO0ZbakvVbVZcC+05Rfw6A/8sblPwZeMpQKS/PYlp5ffXa51K+Z3qT3QQZfqT6mvf6plUmae2yv0uTY0vY69ezypwD7AM9PcgCDrlHHV9XjgVsZPLMcOs8uB45v60nahJkG5EVV9cGququ9TgG8JV2am2yv0uTYovbqs8ulfs00IN+c5JVJtmmvV+Id69JcZXuVJscWt9e2/qXAeuBcNuPZ5cDUs8s33ueKJKuTrN6wYcNs3pc00WYakH8LOAK4EbiBwV3rr+6pTpJmx/YqTY4tbq8+u1zqz0wf8/anwPKquhUgyc7A/2HQsCXNLbZXaXLMur367HJp+GZ6BfnJU40XoKpuYZo73iXNCbZXaXJsUXtNsijJwjY99ezyq7j32eUw/bPLwWeXSw9qpleQH5Jkp40+4c50W0mjZXuVJseWtlefXS71aKYnzXcDX07ysTb/EuAd/VRJ0izZXqXJsUXt1WeXS/2a6Uh6pyZZzeDxMQC/UVVX9lctSVvK9ipNDturNDfN+GvX1mBttNIEsL1Kk8P2Ks09M71JT5IkSZoXDMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkjq1y+Nmn/sGp467CUFz8l0eOuwqSJEnzjleQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6ugtICfZI8n5Sa5MckWS17fynZOcm+Tq9nOnVp4k702yJsllSfbrq26SJEnSpvR5Bfku4E1VtTdwAHBMkr2BY4FVVbUUWNXmAQ4BlrbXCuDEHusmSZIkTau3gFxVN1TV19r0HcBVwO7AYcDKttpK4PA2fRhwag1cCCxMsltf9ZMkSZKmM5I+yEmWAPsCFwG7VtUNbdGNwK5tenfg+s5ma1vZxvtakWR1ktUbNmzor9KSJEmal3oPyEkeCXwceENVfb+7rKoKqM3ZX1WdVFXLqmrZokWLhlhTSZIkqeeAnGRbBuH4tKr6RCu+aarrRPu5vpWvA/bobL64lUmSJEkj0+dTLAKcDFxVVX/VWXQOsLxNLwfO7pQf2Z5mcQBwe6crhiRJkjQSC3rc9zOBVwGXJ7m0lf0h8E7gjCRHA9cBR7RlnwIOBdYAdwJH9Vg3SZIkaVq9BeSq+iKQTSw+eJr1Czimr/pIkiRJM+FIepIkSVKHAVmSJEnqMCBLkiRJHX3epKcR+86f/uK4qzAUj3375eOugiRJmse8gixJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJJIskeS85NcmeSKJK9v5TsnOTfJ1e3nTq08Sd6bZE2Sy5LsN953IEnS8BiQJQHcBbypqvYGDgCOSbI3cCywqqqWAqvaPMAhwNL2WgGcOPoqS5LUDwOyJKrqhqr6Wpu+A7gK2B04DFjZVlsJHN6mDwNOrYELgYVJdhttrSVJ6ocBWdJ9JFkC7AtcBOxaVTe0RTcCu7bp3YHrO5utbWUb72tFktVJVm/YsKG/SkuSNEQOFCLpHkkeCXwceENVfT/JPcuqqpLU5uyvqk4CTgJYtmzZZm0raf7pY8ArB5/SlvAKsiQAkmzLIByfVlWfaMU3TXWdaD/Xt/J1wB6dzRe3Mkkj4I21Ur8MyJLI4FLxycBVVfVXnUXnAMvb9HLg7E75ke2kewBwe6crhqT+eWOt1CO7WEgCeCbwKuDyJJe2sj8E3gmckeRo4DrgiLbsU8ChwBrgTuCokdZWmufaB9Ib2vQdSbo31h7YVlsJXAC8hc6NtcCFSRYm2c0PttL0DMiSqKovAtnE4oOnWb+AY3qtlKQZmeWNtfcJyElWMLjCzGMf+9j+Ki3NcXaxkCRpQm18Y213Wfsgu9k31lbVsqpatmjRoiHWVJosBmRJkiaQN9ZK/TEgS5I0YbyxVuqXfZAlSZo83lgr9ciALEnShPHGWqlfdrGQJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUkdvATnJ3ydZn+QbnbKdk5yb5Or2c6dWniTvTbImyWVJ9uurXpIkSdID6fMK8inA8zcqOxZYVVVLgVVtHuAQYGl7rQBO7LFekiRJ0ib1FpCr6vPALRsVHwasbNMrgcM75afWwIXAwiS79VU3SZIkaVNG3Qd516q6oU3fCOzapncHru+st7aVSZIkSSM1tpv0qqqA2tztkqxIsjrJ6g0bNvRQM0mSJM1now7IN011nWg/17fydcAenfUWt7L7qaqTqmpZVS1btGhRr5WVJEnS/DPqgHwOsLxNLwfO7pQf2Z5mcQBwe6crhiRJkjQyC/racZKPAAcCuyRZC/wx8E7gjCRHA9cBR7TVPwUcCqwB7gSO6qtekiRJ0gPpLSBX1cs3sejgadYt4Ji+6iJJkiTNlCPpSQIc3EeSpCkGZElTTsHBfSRJMiBLGnBwH0mSBgzIkh7IrAb38bnlUj/sEiX1y4AsaUa2ZHAfn1su9eYU7BIl9caALOmBzHpwH0nDZ5coqV8GZEkPxMF9pMkxqy5RYLcoaYoBWRJwz+A+Xwb2SrK2DejzTuC5Sa4GfqXNw2Bwn2sYDO7zd8DvjaHKkjZhS7pEte3sFiXR40AhkiaLg/tIE++mJLtV1Q12iZJmxyvIkiRtHewSJQ2JV5AlSZowrUvUgcAuSdYCf8ygC9QZrXvUdcARbfVPAYcy6BJ1J3DUyCssTRgDsiRJE8YuUVK/7GIhSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktSxYNwVkCRJGrVnvu+ZQ9/nl173paHvU+PhFWRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktThTXqSJElbgfe/6Z+Gvs/XvvuFQ9/nJDAgS5Ik9eRzz/7loe/zlz//uaHvU/dlFwtJkiSpw4AsSZIkdRiQJUmSpI451Qc5yfOBE4BtgA9U1TvHXCVJD8A2K00O26sm0VXvOG/o+/wvbzvoQdeZMwE5yTbAXwPPBdYCX01yTlVdOd6aSZqObVaaHLZXDdM7Xvnioe/zbR8+c+j7nI251MVif2BNVV1TVT8FTgcOG3OdJG2abVaaHLZXaTOkqsZdBwCSvBh4flX9dpt/FfD0qnrtRuutAFa02b2Ab420ovfaBfjemI49Tr7v0XtcVS0a07E3aSZtdg6119mar//vx2lSf+cT215b+Wzb7Cj/3UZ1LN/TZBxrS48zbZudM10sZqqqTgJOGnc9kqyuqmXjrseo+b61OeZKe50t//1Hz9/5eMy2zY7y321Ux/I9Tcaxhn2cudTFYh2wR2d+cSuTNDfZZqXJYXuVNsNcCshfBZYm2TPJdsDLgHPGXCdJm2ablSaH7VXaDHOmi0VV3ZXktcBnGDyC5u+r6ooxV+uBTPzXxlvI9y1gItvsbPjvP3r+zodohO11lP9uozqW72kyjjXU48yZm/QkSZKkuWAudbGQJEmSxs6ALEmSJHUYkDdTkr9Psj7JN8Zdl1FKskeS85NcmeSKJK8fd536lmT7JF9J8vX2nv9k3HXS+CU5MMknx12PuS7J/0hyVZLTetr/cUl+v499a8skeX6SbyVZk+TYHo8zkvPwqM574zjXJNkmySV9/i1Lcm2Sy5NcmmR1X8dpx/qf7Xf3jSQfSbL9bPdpQN58pwDPH3clxuAu4E1VtTdwAHBMkr3HXKe+/QQ4qKqeAuwDPD/JAeOtkjQxfg94blW9YtwVUf86Q1kfAuwNvLzHc8QpjOY8PKrz3jjONa8Hrur5GADPqap9+nwOcpLdgf8BLKuqJzG4CfVls92vAXkzVdXngVvGXY9Rq6obquprbfoOBg1r9/HWql818IM2u217eVfrViDJkiTfTHJKkn9LclqSX0nypSRXJ9m/vb7crrL8vyR7TbOfR7SrWV9p6zl0L5Dkb4H/BPxLkrdN9ztK8uok/5jk3Hal6bVJ3tjWuTDJzm2930ny1XZ17eNJHj7N8X4hyaeTXJzkC0meMNp3LEY4lPWozsOjOu+N+lyTZDHwa8AH+jrGGCwAHpZkAfBw4Luz3aEBWZstyRJgX+CiMVeld+1rqEuB9cC5VbXVv+d55PHAu4EntNdvAs8Cfh/4Q+CbwH+tqn2BtwP/a5p9vA04r6r2B54D/GWSR4yg7nNaVf0ugxPUc4BHsOnf0ZOA3wCeBrwDuLP9vr8MHNnW+URVPa1dXbsKOHqaQ54EvK6qnsrg3+9v+nlnegC7A9d35teyFV1E6fu8N+JzzXuANwM/6/EYMAj5n20fXFc86NpbepCqdcD/Ab4D3ADcXlWfne1+58xzkDUZkjwS+Djwhqr6/rjr07equhvYJ8lC4KwkT6qqedX/fCv271V1OUCSK4BVVVVJLgeWADsCK5MsZfCHfttp9vE84EWdvrDbA49lNF9dTopN/Y4Azm9X5u5IcjvwT638cuDJbfpJSf4cWAg8ksFzfO/R/ib9EvCxJFPFD+3hfWieGsV5b1TnmiQvANZX1cVJDhz2/jfyrKpal+TngHOTfLNd/R+qJDsx+LZiT+A2Bn8LXllVH57Nfg3ImrEk2zL4I3FaVX1i3PUZpaq6Lcn5DPq9GZC3Dj/pTP+sM/8zBn8b/4xBgPv1dvXogmn2EeC/VdW3eqznpJv2d5Tk6Tz4vwEM+pseXlVfT/Jq4MCN9v8Q4Laq2meotdbm2iqHsh71eW8E55pnMvjAeiiDD6uPSvLhqnrlsA/UruxSVeuTnMWgG87QAzLwKwwueGwASPIJBh+aZxWQ7WKhGcng0szJwFVV9Vfjrs8oJFnUPs2T5GHAcxl87a75YUfuPcG/ehPrfAZ4XWsfJNl3BPWaNLP9He0A3NCCyv1u+GtX9P49yUva/pPkKbOsszbfVjeU9ajOe6M811TVW6tqcVUtYfBvdF4f4bjdn7HD1DSDb5L6urj0HeCAJA9v/2YHM4Rv8QzImynJRxj0j9srydok0/WH2xo9E3gVcFAGj2y5tH0C3ZrtBpyf5DIGf/zPrSof7zV//G/gL5Jcwqa/bfszBl0vLmvdNP5sVJWbILP9Hf1/DPp9folNh4ZXAEcn+TpwBT3dHKZNq6q7gKmhrK8Czuhr6PkRnodHdd7bGs81uwJfbG3yK8A/V9Wn+zhQ6699JvA1Bt2zHsIQhp12qGlJkiSpwyvIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQ56Ekd7fH1XwjyceSPPwB1j2uMwKWpDkmyduSXJHkstaunz7uOkmavm0m+UCSvdvyH2xiuwOSXNS2uSrJcSOtuABH0puvfjQ16lSS04DfBebF4B/S1iTJM4AXAPtV1U+S7AJsN+ZqSfPeptpmVf32DDZfCRzRRo/cBtirz7pqel5B1heAxwMkObJ90v16kg9tvGKS30ny1bb841NXnpO8pF2N/nqSz7eyJyb5SvsEfFmSpSN9V9L8sBvwvar6CUBVfa+qvpvkqUk+l+TiJJ9JsluSHZN8K8leMBhsIcnvjLX20tZrU23zgiTLplZKcny7yrwqyaJW/HPADW27u6vqyrbucUk+lOTLSa62/fbLgDyPJVkAHAJcnuSJwB8BB1XVU4DXT7PJJ6rqaW35VcDU6EVvB361lb+olf0ucEK7Ur0MWNvfO5Hmrc8CeyT5tyR/k+SX25DM7wNeXFVPBf4eeEdV3c5gpLNTkrwM2Kmq/m58VZe2avdrm9Os8whgdVU9Efgc8Met/HjgW0nOSvKaJNt3tnkycBDwDODtSR7T43uY1wzI89PDklwKrGYwhvnJDBrcx6rqewBVdcs02z0pyReSXM5gaNcntvIvMTjp/g6wTSv7MvCHSd4CPK6qftTbu5Hmqar6AfBUYAWwAfgo8BrgScC5rZ3/EbC4rX8ug6FY/xqYyVe9krbAdG0zyas3Wu1nDNoswIeBZ7Vt/5TBhaXPAr8JdIdoPruqftTO1ecD+/f1HuY7+yDPT/f0QZ6SZCbbnQIc3vpFvRo4EKCqfrfdGPRrwMVJnlpV/5Dkolb2qSSvqarzhvcWJMHgK1jgAuCC9uH1GOCKqnrGxusmeQjwX4A7gZ3wmx2pN9O0zeUPtkln228DJyb5O2BDkkdvvM4m5jUkXkHWlPOAl0w1wiQ7T7PODsAN7SvcV0wVJvmFqrqoqt7O4JPyHkn+E3BNVb0XOJvB10KShijJXhv179+HQfenRe0mIZJs27pQAfzPtvw3gQ+2tixpyDbRNq/baLWHAC9u078JfLFt+2u596rVUuBu4LY2f1iS7du5+kDgq0OvvACvIKupqiuSvAP4XJK7gUuAV2+02v8HXMQgBF/EIDAD/GX7QxBgFfB14C3Aq5L8B3Aj8L96fxPS/PNI4H1JFgJ3AWsYfKV7EvDeJDsy+Dv/niR3MehWsX9V3dFuqP0j7u33KGl4NtU2z+ys80Ng/yR/BKwHXtrKXwUcn+TOtu0rqurulpkvY9C1Yhfgz6rquyN4L/NSqrw6L0mSNJe15yH/oKr+z7jrMh/YxUKSJEnq8AqyJEmS1OEVZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkDV0SY5L8uFx10PaGiU5JcmfD3F/Q2mvSQ5MsnYYdZKkcTMgz0NJrk3yoyQ/SHJTO+E+ctz1krZmG7W7qdf7x10vSdL9GZDnrxdW1SOB/YBlwB/NdMMM+H9H2nwvrKpHdl6vHWdlkiwY5/Elaa4y5MxzVbUO+BfgF5N8MsmGJLe26cVT6yW5IMk7knwJuBP4T0memOTcJLe0K9F/2Nn1dklOTXJHkiuSLBvxW5MmQpJXJ/lSkuOT3JbkmiS/1MqvT7I+yfKNNtultb07knwuyeM6+zuhbff9JBcn+a+dZcclOTPJh5N8H3j1RnXZNslHknw8yXZJHtOmNyT59yT/o7Puw9q3T7cmuRJ4Wj+/IUkaPQPyPJdkD+BQ4Brgg8DjgMcCPwI2/vr3VcAKYAfgJuBfgU8DjwEeD6zqrPsi4HRgIXDONPuSdK+nA5cBjwb+gUHbeRqDdvVK4P0bdYN6BfBnwC7ApcBpnWVfBfYBdm77+liS7TvLDwPOZNA279kuycOAfwR+AhwB3AX8E/B1YHfgYOANSX61bfLHwC+0168CG4d4SZpYqapx10EjluRaBifWu4DbgX8G3lRVP+qssw9wflXt1OYvAD5fVW9v8y8H3lxV+06z/+OAZ1XVr7T5vYGLq+ph/b0raW7bqN1N+QPgP4C3VdXStt4vMgjLP19VN7Wym4GDq+rSJKcA21fVy9qyRzJox0uq6vppjnsrcGBVfb21zYOq6tmd5ccx6Gq1I4Mw/PqqqiRPBz5WVY/trPtW4D9X1VFJrgF+r6o+3ZatAN5eVfd88yRJk8r+Z/PX4VX1r1MzSR6e5P8Czwd2asU7JNmmqu5u892T7x7Atx9g/zd2pu8Etk+yoKru2tQG0jxwn3YHgy4WDL6RmfIjgKlw3CnrXkG+py1W1Q+S3MLgm5zrk/w+cHSbL+BRDIL5/bbtOADYFnh53XvV5HHAY5Lc1llvG+ALbfoxG+3rumn2K0kTyS4WmvImYC/g6VX1KGDqClM663S/brge+E8jqpuk+9pjaqJdQd4Z+G7rb/xmBl0kdqqqhQyuLm+qHU/5LPAXwKoku7ay64F/r6qFndcOVXVoW35Dtx4MumZJ0lbBgKwpOzC4SnVbkp0Z9C98IJ8EdkvyhiQPTbJD+0pWUv8OTfKsJNsx6It8YetesQODLhwbgAVJ3s7gCvKDqqr/zaDP8qokuwBfAe5I8pZ2Q942SZ6UZOpmvDOAtybZqd3Q+7rhvkVJGh8Dsqa8B3gY8D3gQgY3321SVd0BPBd4IYPuFFcDz+m3itLE+6eNnoN81hbu5x8YfIi9BXgqgxv5AD7DoO3+G4MuDz9m+i4V06qqP2Nwo96/MuiT/AIGN/z9O4O/DR9o5QB/0o7x7wyuQH9oC9+LJM053qQnSZIkdXgFWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdUz0QCG77LJLLVmyZNzVkHp18cUXf6+qFo27HrNle9V8sLW0V2m+m+iAvGTJElavXj3uaki9SrJVjFBme9V8sLW0V2m+662LRZK9klzaeX2/DSqxc5Jzk1zdfu7U1k+S9yZZk+SyJPv1VTdJkiRpU3oLyFX1rarap6r2YfAg+zuBs4BjgVVVtRRY1eYBDgGWttcK4MS+6iZJkiRtyqhu0jsY+HZVXQccBqxs5SuBw9v0YcCpNXAhsDDJbiOqnyRJkgSMLiC/DPhIm961qm5o0zcCu7bp3bnvkKhrW9l9JFmRZHWS1Rs2bOirvpIkSZqneg/ISbYDXgR8bONlNRjnerPGuq6qk6pqWVUtW7TIG4UlSZI0XKO4gnwI8LWquqnN3zTVdaL9XN/K1wF7dLZb3MokSZKkkRlFQH4593avADgHWN6mlwNnd8qPbE+zOAC4vdMVQ5IkSRqJXp+DnOQRwHOB13SK3wmckeRo4DrgiFb+KeBQYA2DJ14c1WfdJEmSpOn0GpCr6ofAozcqu5nBUy02XreAY/qsjyRJkvRgRvUUC0mSJGkiGJAlSZKkDgOyJEmS1NFrH+RReuofnDr0fV78l0cOfZ+S7q+P9jtq/r2QpK2HV5AlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJQGQZGGSM5N8M8lVSZ6RZOck5ya5uv3cqa2bJO9NsibJZUn2G3f9JUkaFgOypCknAJ+uqicATwGuAo4FVlXVUmBVmwc4BFjaXiuAE0dfXUmS+mFAlkSSHYFnAycDVNVPq+o24DBgZVttJXB4mz4MOLUGLgQWJtltpJWWJKknBmRJAHsCG4APJrkkyQeSPALYtapuaOvcCOzapncHru9sv7aV3UeSFUlWJ1m9YcOGHqsvSdLwGJAlASwA9gNOrKp9gR9yb3cKAKqqgNqcnVbVSVW1rKqWLVq0aGiVlSSpTwZkSTC4Ary2qi5q82cyCMw3TXWdaD/Xt+XrgD062y9uZZIkTTwDsiSq6kbg+iR7taKDgSuBc4DlrWw5cHabPgc4sj3N4gDg9k5XDEmSJtqCcVdA0pzxOuC0JNsB1wBHMfgQfUaSo4HrgCPaup8CDgXWAHe2dSVJ2ioYkCUBUFWXAsumWXTwNOsWcEzfdZIkaRzsYiFJkiR1GJAlSZKkDgOyJEmS1NFrQE6yMMmZSb6Z5Kokz0iyc5Jzk1zdfu7U1k2S9yZZk+SyJPv1WTdJkiRpOn1fQT4B+HRVPQF4CnAVg8EHVlXVUmAV9w5GcAiwtL1WACf2XDdJkiTpfnoLyEl2BJ4NnAxQVT+tqtuAw4CVbbWVwOFt+jDg1Bq4EFg4NUCBJEmSNCp9XkHeE9gAfDDJJUk+kOQRwK6dAQVuBHZt07sD13e2X9vKJEmSpJHpMyAvYDBU7YlVtS/wQ+7tTgHc8yzV2pydJlmRZHWS1Rs2bBhaZSVJkiToNyCvBdZW1UVt/kwGgfmmqa4T7ef6tnwdsEdn+8Wt7D6q6qSqWlZVyxYtWtRb5SVJkjQ/9RaQq+pG4Poke7Wig4ErgXOA5a1sOXB2mz4HOLI9zeIA4PZOVwxJkiRpJPoeavp1wGlJtgOuAY5iEMrPSHI0cB1wRFv3U8ChwBrgzrauJEmSNFK9BuSquhRYNs2ig6dZt4Bj+qyPJEmS9GAcSU+SJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIASHJtksuTXJpkdSvbOcm5Sa5uP3dq5Uny3iRrklyWZL/x1l6SpOExIEvqek5V7VNVy9r8scCqqloKrGrzAIcAS9trBXDiyGsqSVJPDMiSHshhwMo2vRI4vFN+ag1cCCxMstsY6idJ0tAZkCVNKeCzSS5OsqKV7VpVN7TpG4Fd2/TuwPWdbde2svtIsiLJ6iSrN2zY0Fe9JUkaqgXjroCkOeNZVbUuyc8B5yb5ZndhVVWS2pwdVtVJwEkAy5Yt26xtJUkaF68gSwKgqta1n+uBs4D9gZumuk60n+vb6uuAPTqbL25lkiRNPAOyJJI8IskOU9PA84BvAOcAy9tqy4Gz2/Q5wJHtaRYHALd3umJIkjTR7GIhCQZ9i89KAoO/C/9QVZ9O8lXgjCRHA9cBR7T1PwUcCqwB7gSOGn2VJUnqhwFZElV1DfCUacpvBg6epryAY0ZQNUmSRs4uFpIkSVJHrwHZkbkkSZI0aUZxBdmRuSRJkjQxxtHFwpG5JEmSNGf1HZAdmUuSJEkTpe+nWDgylyRJkiZKr1eQHZlLkiRJk6a3gOzIXJIkSZpEfXaxcGQuSZIkTZzeArIjc0mSJGkSOZKeJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAlnSPJNskuSTJJ9v8nkkuSrImyUeTbNfKH9rm17TlS8ZacUmShsiALKnr9cBVnfl3AcdX1eOBW4GjW/nRwK2t/Pi2niRJWwUDsiQAkiwGfg34QJsPcBBwZltlJXB4mz6szdOWH9zWlyRp4hmQJU15D/Bm4Gdt/tHAbVV1V5tfC+zepncHrgdoy29v699HkhVJVidZvWHDhh6rLknS8BiQJZHkBcD6qrp4mPutqpOqallVLVu0aNEwdy1JUm8WjLsCkuaEZwIvSnIosD3wKOAEYGGSBe0q8WJgXVt/HbAHsDbJAmBH4ObRV1uSpOHzCrIkquqtVbW4qpYALwPOq6pXAOcDL26rLQfObtPntHna8vOqqkZYZUmSemNAlvRA3gK8MckaBn2MT27lJwOPbuVvBI4dU/0kSRq63rtYJNkGWA2sq6oXJNkTOJ3ByfZi4FVV9dMkDwVOBZ7K4Kval1bVtX3XT9J9VdUFwAVt+hpg/2nW+THwkpFWTJKkERnFFWSfqypJkqSJ0WtA9rmqkiRJmjR9X0F+Dz5XVZIkSROkt4Dsc1UlSZI0ifq8Sc/nqkqSJGni9HYF2eeqSpIkaRKN4znIPldVkiRJc9ZIhpr2uaqSJEmaFI6kJ0mSJHXMKCAnWTWTMknjZ3uVJGl2HrCLRZLtgYcDuyTZCZgauONR3Pv8YklzgO1VkqTheLA+yK8B3gA8BriYe0+43wfe31+1JG0B26skSUPwgAG5qk4ATkjyuqp634jqJGkL2F4lSRqOGT3Foqrel+SXgCXdbarq1J7qJWkL2V4lSZqdGQXkJB8CfgG4FLi7FRfgCVeaY2yvkiTNzkyfg7wM2NuR7aSJYHuVJGkWZvoc5G8AP99nRSQNje1VkqRZmOkV5F2AK5N8BfjJVGFVvaiXWkmaDdurJEmzMNOAfFyflZA0VMeNuwKSJE2ymT7F4nN9V0TScNheJUmanZk+xeIOBnfBA2wHbAv8sKoe1VfFJG0Z26skSbMz0yvIO0xNJwlwGHBAX5WStOVsr5Ikzc5Mn2Jxjxr4R+BXh18dScNke5UkafPNtIvFb3RmH8LgOas/7qVGkmbF9ipJ0uzM9CkWL+xM3wVcy+BrW0lzj+1VkqRZmGkf5KP6roik4bC9SpI0OzPqg5xkcZKzkqxvr48nWdx35SRtPturJEmzM9Ob9D4InAM8pr3+qZVJmntsr5IkzcJMA/KiqvpgVd3VXqcAi3qsl6QtZ3uVJGkWZhqQb07yyiTbtNcrgZv7rJikLWZ7lSRpFmYakH8LOAK4EbgBeDHw6p7qJGl2bK+SJM3CTB/z9qfA8qq6FSDJzsD/YXAiljS32F4lSZqFmV5BfvLUyRagqm4B9u2nSpJmyfYqSdIszDQgPyTJTlMz7YrUTK8+Sxot26skSbMw05Pmu4EvJ/lYm38J8I5+qiRplja7vSbZHvg88FAGfxfOrKo/TrIncDrwaOBi4FVV9dMkDwVOBZ7K4AbAl1bVtX28GUmSRm1GV5Cr6lTgN4Cb2us3qupDfVZM0pbZwvb6E+CgqnoKsA/w/CQHAO8Cjq+qxwO3Ake39Y8Gbm3lx7f1JEnaKsz4a9equhK4sse6SBqSzW2vVVXAD9rstu1VwEHAb7bylcBxwInAYW0a4Ezg/UnS9iNJ0kSbaR9kSVu59szkS4H1wLnAt4HbququtspaYPc2vTtwPUBbfjuDbhiSJE08A7IkAKrq7qraB1gM7A88Ybb7TLIiyeokqzds2DDb3UmSNBIGZEn3UVW3AecDzwAWJpnqirUYWNem1wF7ALTlOzLNaH1VdVJVLauqZYsWOdq1JGkyGJAlkWRRkoVt+mHAc4GrGATlF7fVlgNnt+lz2jxt+Xn2P5YkbS16C8hJtk/ylSRfT3JFkj9p5XsmuSjJmiQfTbJdK39om1/Tli/pq26S7mc34PwklwFfBc6tqk8CbwHemGQNgz7GJ7f1TwYe3crfCBw7hjpLktSLPgcPmHps1A+SbAt8Mcm/MDiZHl9Vpyf5WwaPizqRzmOjkryMwWOjXtpj/SQ1VXUZ04y2V1XXMOiPvHH5jxk8X1mSpK1Ob1eQa2BTj406s5WvBA5v04e1edryg5Okr/pJkiRJ0+m1D3Ifj43yrnhJkiT1qdeA3Mdjo7wrXpIkSX0ayVMshvnYKEmSJKlPfT7FwsdGSZIkaeL0+RSL3YCVSbZhEMTPqKpPJrkSOD3JnwOXcN/HRn2oPTbqFuBlPdZNkiRJmlZvAdnHRkmSJGkSOZKeJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLIskeSc5PcmWSK5K8vpXvnOTcJFe3nzu18iR5b5I1SS5Lst9434EkScNjQJYEcBfwpqraGzgAOCbJ3sCxwKqqWgqsavMAhwBL22sFcOLoqyxJUj8MyJKoqhuq6mtt+g7gKmB34DBgZVttJXB4mz4MOLUGLgQWJtlttLWWJKkfBmRJ95FkCbAvcBGwa1Xd0BbdCOzapncHru9straVbbyvFUlWJ1m9YcOG/iotSdIQ9RaQ7dMoTZ4kjwQ+Dryhqr7fXVZVBdTm7K+qTqqqZVW1bNGiRUOsqSRJ/enzCrJ9GqUJkmRbBuH4tKr6RCu+aarrRPu5vpWvA/bobL64lUmSNPF6C8j2aZQmR5IAJwNXVdVfdRadAyxv08uBszvlR7Zvfg4Abu90xZAkaaItGMVBZtmn8T4n3SQrGFxh5rGPfWx/lZbml2cCrwIuT3JpK/tD4J3AGUmOBq4DjmjLPgUcCqwB7gSOGmltJUnqUe8BeeM+jYMLVQNVVUk2u08jcBLAsmXLNmtbSdOrqi8C2cTig6dZv4Bjeq2UJElj0utTLOzTKEmSpEnT51Ms7NMoSZKkidNnFwv7NEqSJGni9BaQ7dMoSZKkSeRIepIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqWMkI+lJku7vO3/6i+Ouwqw99u2Xj7sKkjR0XkGWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUsWDcFZg03/nTXxz6Ph/79suHvk9JkiRtGa8gS5IkSR0GZEkAJPn7JOuTfKNTtnOSc5Nc3X7u1MqT5L1J1iS5LMl+46u5JEnDZUCWNOUU4PkblR0LrKqqpcCqNg9wCLC0vVYAJ46ojpIk9a63gOzVKGmyVNXngVs2Kj4MWNmmVwKHd8pPrYELgYVJdhtJRSVJ6lmfV5BPwatR0qTbtapuaNM3Aru26d2B6zvrrW1l95FkRZLVSVZv2LCh35pKkjQkvQVkr0ZJW5eqKqA2c5uTqmpZVS1btGhRTzWTJGm4Rt0HeVZXo8ArUtKI3TT1YbX9XN/K1wF7dNZb3MokSZp4Y7tJb0uuRrXtvCIljc45wPI2vRw4u1N+ZLt/4ADg9s6HX0mSJtqoBwq5KcluVXWDV6OkuSXJR4ADgV2SrAX+GHgncEaSo4HrgCPa6p8CDgXWAHcCR428wpIk9WTUAXnqatQ7uf/VqNcmOR14Ol6Nkkauql6+iUUHT7NuAcf0WyNJksajt4Ds1ShJkiRNot4CslejJEmSNIkcSU+SJEnqMCBLkiRJHaO+SU+b4Znve+bQ9/ml131p6PuUpJnq4+/aOPi3VNq6eQVZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1GFAliRJkjoMyJIkSVKHAVmSJEnqMCBLkiRJHQZkSZIkqcOALEmSJHUYkCVJkqQOA7IkSZLUYUCWJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpA4DsiRJktRhQJYkSZI6DMiSJElShwFZkiRJ6jAgS5IkSR0GZEmSJKnDgCxJkiR1GJAlSZKkDgOyJEmS1DGnAnKS5yf5VpI1SY4dd30kPTDbrCRpa7Rg3BWYkmQb4K+B5wJrga8mOaeqrhxvzbZ+n3v2L/ey31/+/OfuV/b+N/3T0I/z2ne/8H5l73jli4d+HIC3ffjMXvY7iWyzkqSt1ZwJyMD+wJqqugYgyenAYYAnW81pV73jvKHv87+87aCh77MHtllJ0lYpVTXuOgCQ5MXA86vqt9v8q4CnV9VrN1pvBbCize4FfGszD7UL8L1ZVneuHcv3tHUf63FVtaiPyszGTNrsENrrsIzy33gu8X2P3pxsr5I2z1y6gjwjVXUScNKWbp9kdVUtG2KVxn4s35PHmqtm216HZb793qf4viVpy8ylm/TWAXt05he3Mklzk21WkrRVmksB+avA0iR7JtkOeBlwzpjrJGnTbLOSpK3SnOliUVV3JXkt8BlgG+Dvq+qKHg41yq97R3Us35PHGrkRttlh2Gp+75vJ9y1JW2DO3KQnSZIkzQVzqYuFJEmSNHYGZEmSJKljXgXkUQ2Lm+Tvk6xP8o2+jtGOs0eS85NcmeSKJK/v8VjbJ/lKkq+3Y/1JX8dqx9smySVJPtnzca5NcnmSS5Os7vE4C5OcmeSbSa5K8oy+jqX7SvK29n/2svbv/PRx16lvSX4+yelJvp3k4iSfSvKfx12vviVZnOTsJFcnuSbJ+5M8dNz1kjR55k1A7gyLewiwN/DyJHv3dLhTgOf3tO+uu4A3VdXewAHAMT2+p58AB1XVU4B9gOcnOaCnYwG8Hriqx/13Paeq9un5uaknAJ+uqicAT2F0721eax9EXgDsV1VPBn4FuH68tepXkgBnARdU1S9U1VOBtwK7jrdm/Wrv+xPAP1bVUmAp8DDgf4+1YpIm0rwJyHSGxa2qnwJTw+IOXVV9Hrilj31vdJwbquprbfoOBqFr956OVVX1gza7bXv1codnksXArwEf6GP/o5ZkR+DZwMkAVfXTqrptrJWaP3YDvldVPwGoqu9V1XfHXKe+PQf4j6r626mCqvp6VX1hjHUahYOAH1fVBwGq6m7gfwJHJnnkWGsmaeLMp4C8O/e9crSWnsLkOCRZAuwLXNTjMbZJcimwHji3qvo61nuANwM/62n/XQV8tn0NveJB194yewIbgA+2biMfSPKIno6l+/ossEeSf0vyN0l+edwVGoEnARePuxJj8EQ2et9V9X3gWuDx46iQpMk1nwLyVqtdHfk48IZ2QuhFVd1dVfswGDFt/yRPGvYxkrwAWF9VozrBP6uq9mPQ9eaYJM/u4RgLgP2AE6tqX+CHQG994HWv9q3HU4EVDD6kfDTJq8daKUnSnDefAvJWOSxukm0ZhOPTquoTozhm6x5wPv30s34m8KIk1zLoBnNQkg/3cBwAqmpd+7meQb/N/Xs4zFpgbeeK+5kMArNGoH2wu6Cq/hh4LfDfxl2nnl3B4EPBfHMlG73vJI8Cfh741lhqJGlizaeAvNUNi9tuSjkZuKqq/qrnYy1KsrBNPwx4LvDNYR+nqt5aVYuragmDf6PzquqVwz4OQJJHJNlhahp4HjD0J49U1Y3A9Un2akUHMziZq2dJ9kqytFO0D3DdmKozKucBD+12GUry5CT/dYx1GoVVwMOTHAn33Jj9buD9VfWjsdZM0sSZNwG5qu5icPXoMwxuZjujr2Fxk3wE+DKwV5K1SY7u4zgMrra+isFV1kvb69CejrUbcH6Syxh82Di3qnp9BNsI7Ap8McnXga8A/1xVn+7pWK8DTmu/v32A/9XTcXRfjwRWtkchXsbgCTbHjbdK/arB8Ki/DvxKe8zbFcBfADeOt2b96rzvFye5GrgZ+FlVvWO8NZM0iRxqWpK01UnyS8BHgF+fetqPJM2UAVmSJEnqmDddLCRJkqSZMCBLkiRJHQZkSZIkqcOALEmSJHUYkOexJHe3R8N9I8nHkjx8lvtbkmTozxGWtladNjj1mvEIi0kOTDKrRy0muSDJsi3c9pQkL57N8SVprlow7gporH7Uho4myWnA7wIPOuBIkgXtudKSZueeNjhqbSANSdI0vIKsKV8AHp/khUkuSnJJkn9NsitAkuOSfCjJl4APJdk1yVlJvt5ev9T2s02Sv0tyRZLPtlH3JG2GJNcm+Yt2VXl1kv2SfKYN/PG7nVUfleSfk3wryd8meUjb/sS23RVJ/mSj/b4rydeAl3TKH9KuCP95km2S/GWSrya5LMlr2jpJ8v52rH8Ffm5Evw5JGjkDskiyADgEuBz4InBAVe0LnA68ubPq3sCvVNXLgfcCn6uqpwD7AVOjEi4F/rqqngjcBvy3kbwJaTI9bKMuFi/tLPtOu7r8BeAU4MXAAcCfdNbZn8EojXsDvwD8Rit/W1UtA54M/HKSJ3e2ubmq9quq09v8AuA04Oqq+iPgaOD2qnoa8DTgd5LsyWCUur3asY4EfglJ2krZxWJ+e1iSS9v0F4CTGZwAP5pkN2A74N87659TVT9q0wcxOElSVXcDtyfZCfj3qpra58XAkj7fgDThHqiLxTnt5+XAI6vqDuCOJD9JsrAt+0pVXQP3DHH/LOBM4IgkKxj8jd+NQai9rG3z0Y2O83+BMzpDMj8PeHKnf/GODD74Phv4SGvv301y3pa8YUmaBAbk+e1+J+ck7wP+qqrOSXIgcFxn8Q9nsM+fdKbvBuxiIW2Zqbb0M+7brn7GvX+7Nx4KtdrV3t8HnlZVtyY5Bdi+s87G7fj/Ac9J8u6q+jEQ4HVV9ZnuSkkO3eJ3IkkTxi4W2tiOwLo2vfwB1lsF/HcY3OyTZMe+KybpfvZPsmfre/xSBl2kHsUgBN/e7iE45EH2cTLwKeCM1t3qM8B/T7ItQJL/nOQRwOeBl7b2vhvwnH7ekiSNn1eQtbHjgI8luRU4D9hzE+u9HjgpydEMrhT/d+CGkdRQ2np0uzkBfLqqZvyoN+CrwPuBxwPnA2dV1c+SXAJ8E7ge+NKD7aSq/qp9yP0Q8AoGXaO+liTABuBw4CwGXauuBL4DfHkz6ilJEyVVG39DJ0mSJM1fdrGQJEmSOgzIkiRJUocBWZIkSeowIEuSJEkdBmRJkiSpw4AsSZIkdRiQJUmSpI7/H/Ffc4X78hFGAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"#### Checking the distribution of continuous predictor variables","metadata":{}},{"cell_type":"code","source":"fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 12))\n\nfor i, ax in enumerate(axes.flat):\n if i < len(['Age', 'Fare']):\n sns.histplot(train[(['Age', 'Fare'][i])], kde=True, ax=ax)\n ax.set_title(['Age', 'Fare'][i])\n else:\n axes.flat[i].set_visible(False)\nplt.tight_layout()\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:48.430218Z","iopub.execute_input":"2023-02-14T16:28:48.430546Z","iopub.status.idle":"2023-02-14T16:28:49.125984Z","shell.execute_reply.started":"2023-02-14T16:28:48.430515Z","shell.execute_reply":"2023-02-14T16:28:49.125279Z"},"trusted":true},"execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 864x864 with 3 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAA1gAAAJRCAYAAABY5xbUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABepUlEQVR4nO3deZhcZZ33//e3qvcl6SydhexA2NUAYUdFcEFHBRVQFEHFQUUfcVzmUWccdZ5hRufnPiMoAoqCIAqM6OCCiAuyhrCFsAUIWciedGft/f79USdJB7JT1dXL+3VdddU59zmn+tsnJ1X9qXOf+0RKCUmSJEnSS5crdwGSJEmSNFgYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiQNShHxp4hYExHV5a5FkjR0GLAkSYNOREwFXgkk4K3lrUaSNJQYsCRJg9G5wN3Aj4DzNjdGxKiI+FVErI2I+yLi3yLijl7LD4qIWyNidUQ8ERFn9X3pkqSBrKLcBUiSVALnAt8A7gHujoixKaVlwHeBDcA4YCrwO+A5gIioB24F/gV4I/Ay4NaImJNSmtvnv4EkaUDyDJYkaVCJiBOBKcD1KaX7gaeBd0dEHngH8MWU0sYsNF3Va9M3A/NTSj9MKXWllB4AbgDO7ONfQZI0gBmwJEmDzXnA71NKK7P5n2ZtzRR6bizstW7v6SnAMRHRsvkBvIfC2S5JknaLXQQlSYNGRNQCZwH5iFiaNVcDTcBYoAuYCDyZLZvUa/OFwJ9TSq/rm2olSYNRpJTKXYMkSUUREWdTuM5qBtDRa9H1wH0UwlU38EFgMvB7YEFK6cSIaATmAP8MXJdtNwNYn1J6rC/qlyQNfHYRlCQNJucBP0wpLUgpLd38AP6bQne/jwHDgaXAT4BrgXaAlNI64PXAu4Dns3W+SuEMmCRJu8UzWJKkISsivgqMSymdt8uVJUnaDZ7BkiQNGdl9rl4eBUcD5wM3lbsuSdLg4SAXkqShpJFCt8B9gGXA14FflrUiSdKgUrIzWBExKSJuj4i5EfFoRFyUtX8pIhZHxIPZ4029tvlcRMyLiCci4g2lqk2SNDSllO5LKe2fUqpLKU1LKf1Hsq+8JKmISnYNVkSMB8anlGZnIzPdD5xOYfjc9Smlr71g/UMofKt4NIVvFv8AHJBS6i5JgZIkSZJUZCU7g5VSWpJSmp1NrwMeAybsZJPTgOtSSu0ppWeBeRTCliRJkiQNCH1yDVZETAUOB+4BTgA+FhHnArOAT6WU1lAIX3f32mwROw9kjB49Ok2dOrUUJUuSJEnSDt1///0rU0rNL2wvecCKiAbgBuATKaW1EXEp8P+AlD1/HfjAHrzeBcAFAJMnT2bWrFnFL1qSJEmSdiIinttee0mHaY+ISgrh6pqU0o0AKaVlKaXulFIP8AO2dgNcDEzqtfnErG0bKaXLUkozU0ozm5tfFBglSZIkqWxKOYpgAFcAj6WUvtGrfXyv1d4GzMmmbwbeFRHVETENmA7cW6r6JEmSJKnYStlF8ATgvcAjEfFg1vZ54OyImEGhi+B84EMAKaVHI+J6YC7QBXzUEQQlSZIkDSQlC1gppTuA2M6iW3ayzcXAxaWqSZIkSZJKqaTXYEmSJEnSUGLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJKoNJk6cQESV7TJo8pdy/oiRJQ1Ip74MlSdqBRQsX8I3fP1Gy1//k6w8s2WtLkqQd8wyWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQlC1gRMSkibo+IuRHxaERclLWPjIhbI+Kp7HlE1h4R8Z2ImBcRD0fEEaWqTZIkSZJKoZRnsLqAT6WUDgGOBT4aEYcAnwVuSylNB27L5gHeCEzPHhcAl5awNkmSJEkqupIFrJTSkpTS7Gx6HfAYMAE4DbgqW+0q4PRs+jTgx6ngbqApIsaXqj5JkiRJKrY+uQYrIqYChwP3AGNTSkuyRUuBsdn0BGBhr80WZW2SJEmSNCCUPGBFRANwA/CJlNLa3stSSglIe/h6F0TErIiYtWLFiiJWKkmSJEkvTUkDVkRUUghX16SUbsyal23u+pc9L8/aFwOTem0+MWvbRkrpspTSzJTSzObm5tIVL0mSJEl7qJSjCAZwBfBYSukbvRbdDJyXTZ8H/LJX+7nZaILHAq29uhJKkiRJUr9XUcLXPgF4L/BIRDyYtX0e+ApwfUScDzwHnJUtuwV4EzAP2Ai8v4S1SZIkSVLRlSxgpZTuAGIHi0/ZzvoJ+Gip6pEkSZKkUuuTUQQlSZIkaSgwYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCIxYEmSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSiqRkASsiroyI5RExp1fblyJicUQ8mD3e1GvZ5yJiXkQ8ERFvKFVdkiRJklQqpTyD9SPg1O20fzOlNCN73AIQEYcA7wIOzba5JCLyJaxNkiRJkoquZAErpfQXYPVurn4acF1KqT2l9CwwDzi6VLVJkiRJUimU4xqsj0XEw1kXwhFZ2wRgYa91FmVtLxIRF0TErIiYtWLFilLXKkmSJEm7ra8D1qXAfsAMYAnw9T19gZTSZSmlmSmlmc3NzUUuT5IkSZL2Xp8GrJTSspRSd0qpB/gBW7sBLgYm9Vp1YtYmSZIkSQNGnwasiBjfa/ZtwOYRBm8G3hUR1RExDZgO3NuXtUmSJEnSS1VRqheOiGuBk4DREbEI+CJwUkTMABIwH/gQQErp0Yi4HpgLdAEfTSl1l6o2SZIkSSqFkgWslNLZ22m+YifrXwxcXKp6JEmSJKnUyjGKoCRJkiQNSgYsSZIkSSoSA5YkSZIkFYkBS5IkSZKKZLcCVkScsDttkiRJkjSU7e4ZrP/azTZJkiRJGrJ2Okx7RBwHHA80R8Qney0aBuRLWZgkSZIkDTS7ug9WFdCQrdfYq30tcEapipIkSZKkgWinASul9GfgzxHxo5TSc31UkyRJkiQNSLs6g7VZdURcBkztvU1K6eRSFCVJkiRJA9HuBqyfA98DLge6S1eOJEmSJA1cuxuwulJKl5a0EkmSJEka4HZ3mPZfRcSFETE+IkZufpS0MkmSJEkaYHb3DNZ52fNnerUlYN/iliNJkiRJA9duBayU0rRSFyJJkiRJA91uBayIOHd77SmlHxe3HEmSJEkauHa3i+BRvaZrgFOA2YABS5IkSZIyu9tF8P/0no+IJuC6UhQkSZIkSQPV7o4i+EIbAK/LkiRJkqRedvcarF9RGDUQIA8cDFxfqqIkSZIkaSDa3WuwvtZrugt4LqW0qAT1SJIkSdKAtVtdBFNKfwYeBxqBEUBHKYuSJEmSpIFotwJWRJwF3AucCZwF3BMRZ5SyMEmSJEkaaHa3i+A/AUellJYDREQz8AfgF6UqTJIkSZIGmt0dRTC3OVxlVu3BtpIkSZI0JOzuGazfRsTvgGuz+XcCt5SmJEmSJEkamHYasCJif2BsSukzEfF24MRs0V3ANaUuTpIkSZIGkl2dwfoW8DmAlNKNwI0AEfGybNlbSlibJEmSJA0ou7qOamxK6ZEXNmZtU0tSkSRJkiQNULsKWE07WVZbxDokSZIkacDbVcCaFRF//8LGiPggcH9pSpKkwS2lBOFArJIkDUa7ugbrE8BNEfEetgaqmUAV8LYS1iVJA15KiadXrOf2x1dw59MrWbq2ndUb2lm9oYPJn76JK//2LMNrKhleV8m4YTXsP6aBmsp8ucuWJEkvwU4DVkppGXB8RLwGOCxr/t+U0h9LXpkkDVDL1rZx5R3PcsucJSxcvQmA/ZrrmTa6npdNGMbI+mq+8h8Xc/Db/57WTZ08s2IDjz6/ltufWM7UUfUcOK6R/ZobyOeizL+JJEnaU7t1H6yU0u3A7SWuRZIGtAWrNnLpn5/mhvsX0Z0SJx3QzIdfvR8nHTiGCU3bXrb6uTddzRu+8AWgcKZr+bp2nli2jieXruOZlRsYUVfJK6c3M3VUHREGLUmSBordvdGwJGkH1rd38f/99nF+cvdzVORynDlzIh961X5MHlW3W9tHBGOH1TB2WA0n7j+aZ1du4I55K7n5oeeZNLKWV+7fTHNjdYl/C0mSVAwGLEl6Cf74+DL++aY5LFnbxjnHTOFjJ+/P2GE1e/16uQj2a25g6qh6Hlncyj3PrOK6+xZwwn6jOXxyk2ezJEnq5wxYkrQXWjd18oX/mcPNDz3PAWMbuOE9x3PE5BFFe/18LpgxqYmDxjXyh8eW8dd5K1ncsonXHTLWgTAkSerHDFiStIcefb6Vj1w9m+dbNvEPrz2Aj5y0H1UVpRl2vaYyz9+9bDwPLmzhjnkrufbeBbzpZeNf0lkySZJUOiW7EUtEXBkRyyNiTq+2kRFxa0Q8lT2PyNojIr4TEfMi4uGIOKJUdUnSS/HzWQt5+yV30tHVw88+dCwXvXZ6ycLVZhHB4ZNHcOaRk0jADbMXsWD1xpL+TEmStHdK+VfBj4BTX9D2WeC2lNJ04LZsHuCNwPTscQFwaQnrkqQ91tndw+dveoTP/OJhjpwygl9//ESOnDKyT2sYN7yGd86cxLCaSm5+8HnmLV/fpz9fkiTtWskCVkrpL8DqFzSfBlyVTV8FnN6r/cep4G6gKSLGl6o2SdoT69o6Of+qWfz0ngV8+NX78ZPzj2F0Q3lG9auvruCMIycyZlg1tzyyhDnPt5alDkmStH2l7dfyYmNTSkuy6aXA2Gx6ArCw13qLsjZJKqulrW2c9f27+du8lXz1HS/js288qOw3AK6pzPO2wycwaWQdtz22nIcXtZS1HkmStFVfB6wtUkoJSHu6XURcEBGzImLWihUrSlCZJBU8uWwdb7vkbyxYtYEr33cU7zxqcrlL2qIyn+Otr9iHaaPruf2JFTy+dG25S5IkSfR9wFq2uetf9rw8a18MTOq13sSs7UVSSpellGamlGY2NzeXtFhJQ9cji1o56/t30d2TuP7Dx/HqA/rf+00+F7zpsHFMaKrl93OX8cwKr8mSJKnc+jpg3Qycl02fB/yyV/u52WiCxwKtvboSSlKfum/+at79g7tpqK7gFx8+nkP3GV7uknaoIp/jLa8YT3NDNbfMWcqiNY4uKElSOZVymPZrgbuAAyNiUUScD3wFeF1EPAW8NpsHuAV4BpgH/AC4sFR1SdLO3PHUSs694l6aG6v5+YePY/KounKXtEvVFXlOnzGB4bWV/OqhJaxc317ukiRJGrJKdqPhlNLZO1h0ynbWTcBHS1WLJO2OP8xdxoU/nc2+o+v5yfnH0NxYnpEC90ZtVZ7TZ+zDz2Yt5OaHnidX31TukiRJGpLKNsiFJPUnv3roeT589f0cPK6R6y44dkCFq80aayp5y8v3YVNHN2Pe/gXaOrvLXZIkSUOOAUvSkHf9rIVcdN0DHDF5BFd/8Bia6qrKXdJeGzushlMPG0fV+Ol86vqH6OnZ48FaJUnSS2DAkjSk/fiu+fzjLx7mhP1Hc9UHjqaxprLcJb1k+zU30PKnH/K/jyzhW394stzlSJI0pBiwJA1Z3/vz0/zLLx/ldYeM5fLzZlJblS93SUWz9t6bOGvmRL7zx3n8/tGl5S5HkqQhw4AlachJKfHNW5/kK795nLe8Yh8uec8RVFcMnnC12b+edhgvnzicT17/EE97jyxJkvqEAUvSkJJS4j9+8zjfvu0pzjxyIt965wwq84PzrbCmMs+l5xxJVUWOD//kfja0d5W7JEmSBr3B+VeFJG1HT0/iC7+cw2V/eYZzj5vCV9/xcvK5KHdZJTWhqZb/Pvtwnl6xnn/8xcMU7oohSZJKxYAlaUjo7kn84w0Pc/XdC/jQq/bly289lNwgD1ebHb//aP7vqQfxv48s4Qd/fabc5UiSNKiV7EbDktRfdHb38A8/e5BfP7yET7x2OhedMp2IoRGuNrvgVfvy0KIWvvKbxzlsn+Ecv//ocpckSdKg5BksSYNaW2c3H7l6Nr9+eAmfe+NBfOK1Bwy5cAUQEfznGa9g3+YGPnbtAyxu2VTukiRJGpQMWJIGrdZNnZx75b384bFlfPmth/KhV+9X7pLKqqG6gu+/90g6unq48Or7aevsLndJkiQNOgYsSYPS0tY23vn9u3hgwRq+c/bhnHf81HKX1C/s19zA1858BQ8tauWLv3y03OVIkjToGLAkDTrzlq/nHZfeycLVG/nh+47mra/Yp9wl9SunHjaOC0/aj5/NWsjP7ltQ7nIkSRpUDFiSBpU7563kHZfeSXtXDz/70HGcON3BHLbnU68/kBP3H80XfvkojyxqLXc5kiQNGgYsSYPGT+9ZwLlX3suYxmpuuvB4DpswvNwl9Vv5XPDtd81gdH0VH776ftZs6Ch3SZIkDQoGLEkDXndP4l9/NZfP3/QIJ+w/mhsuPJ5JI+vKXVa/N6qhmkvOOZIV69r5xM8epLvHmxBLkvRSGbAkDWir1rfzvh/ey5V/e5b3nzCVK86bybCaynKXNWDMmNTEF996CH9+cgXfue2pcpcjSdKA542GJQ1Y9z+3ho9eM5vVGzv46jtexjuPmlzukgakdx89mdnPtfCdPz7FjElNvOagMeUuSZKkAcszWJIGnJQSV97xLO/8/l1UVeS48SPHG65egojg304/jIPGDeMTP3uQhas3lrskSZIGLAOWpAFl+bo2PvCj+/jXX8/lpAPH8Kv/c6KDWRRBbVWe751zBCklPuxNiCVJ2msGLElFN2nyFCKi6I+6A4/nyH+6kdvmLKJn1vVc9t4jGV7r9VbFMmVUPd985wwefX4t//LLOeUuR5KkAclrsCQV3aKFC/jG758o2utt6ujmL0+t4PGl6xjTWM0bDh3Hv33jx+RyVxXtZ6jglIPH8vGT9+c7f5zHyyc2cc6xU8pdkiRJA4oBS1K/lVJi7pK13PHUSjq6ezh66kiOnjaSfC7KXdqgdtFrD+CRxa186eZHmT6mgWP2HVXukiRJGjDsIiipX1q5vp1fzF7EHx5bzsj6Kt599GSO22+U4aoP5HPBt88+nMmj6vjINbNZtMZBLyRJ2l0GLEn9yvq2Lm6du4xr7lnA6vUdnHLwGM44ciKjGqrLXdqQMqymksvPnUlndw9//+P72djRVe6SJEkaEAxYkvqF9s5u7np6FVfdNZ8nlq7jiMlNnHf8VA7bZzgRnrUqh32bG/ivsw/niaVr+fTPH6KnJ5W7JEmS+j2vwZJUVm2d3TywoIUHF7bQ0d3DAWMaOH7/0Y4O2E+cdOAYPvvGg/j3Wx7n66Of4DNvOKjcJUmS1K8ZsCSVxbq2Th5a1MrDi1ro7E7s39zA0dNG0txoV8D+5u9fuS/PrtzAd29/mikj6znrqEnlLkmSpH7LgCUNQZMmT2HRwgVl+dlL17bxwII1zFu+npRg/zGFYDW6n11jVc591N9EBP962mEsWrOJz9/0CPs01XLi9NHlLkuSpH7JgCUNQcW+T9ULffL1B24z39ndw5PL1vHI4laWrW2nKp/jFRObeMWkpn7bFbCv91F/V5nPccl7juDM793FR66+nxsuPJ4DxjaWuyxJkvodA5akkkgpsWxdO48tWcvjS9bR0d3DyLoqXjV9NIfsM4zqiny5S9Qeaqyp5Ir3HcXbvvs3zrvyXn7xkeOZ0FRb7rIkSepXDFiSiqp1UyfDj38XP777OVo2dpLPBfuPaeBl+wxnn6YaRwQc4CY01XLVB47mrO/fxXsvv4frP3xcv+veKUlSORmwJL1kbZ3dPLVsPY8tXcuS1jaaXnkO9VUVHDllBNObG6iu9GzVYHLw+GH88H1Hcc4V93Delfdy7QXHMqymf3b1lCSpr3kfLEl7paunh3nL1/Prh5/n8r8+yx+fWE57Zw/H7zeKRZe8nzOOnMhh+ww3XA1SM6eO5NJzjuSJpev44FWzaOvsLndJkiT1C57BkrTbUko839LG40vX8tTy9bR39VBXleflE4dz0LhGmhuriQiuXbei3KWqD7zmwDF8/axX8ImfPcgHr5rFD86dSW2VgVqSNLQZsCTt0pqNHTy2ZC1PLF3H2rYuKrLrqg4a18ikEXXkcl5XNVSdNmMCHV09/OMND/PBH9/H5eceZciSJA1pBixJ29XR1cOTy9cx9/nCdVUBTBpZx3H7jmLf5gaqKuxhrIIzZ04iF8Gnf/EQH/jRfVzxvpnUVfnxIkkamvwElLTF5i6Ajy5p5all6+nqSYyoq+TE/Udz0LhG6qt9y9D2vePIieRy8KnrH+L9P7yPy8+bSaMDX0iShqCy/LUUEfOBdUA30JVSmhkRI4GfAVOB+cBZKaU15ahPGmo2tHfx6PNrmbtkLa2bOqnK5zhoXCOH7DOMccMcWl27522HTyQXwaeuf4h3fv9ufvSBoxjTWFPusiRJ6lPl/Dr6NSmllb3mPwvcllL6SkR8Npv/v+UpTRoalq1t46GFLTy5bD3dKTFxRC3HTBvJ/mMaqMzbBVB77rQZExheW8lHrp7NOy69kx9/4Bimja4vd1mSJPWZ/vQX1GnAVdn0VcDp5StFGrw6u3uoO+iVXD9rIdfdt5B5K9Zz2IRhnHvsFN5xxEQOHj/McKWX5KQDx3DtBceyob2bd1x6Jw8ubCl3SZIk9Zly/RWVgN9HxP0RcUHWNjaltCSbXgqMLU9p0uDUsrGD794+j1d+9XaaT/u/bOzo5lXTR3P+idM46cAxjKivKneJGkRmTGriho8cT311nrO+fxc3zl5U7pIkSeoT5eoieGJKaXFEjAFujYjHey9MKaWISNvbMAtkFwBMnjy59JVKA9zK9e1c/tdn+cld89nQ0c0rp4/m4Ss+y8cvvdprq1RS00bX8z8XnsBHfzqbT17/EHOfX8tn33gQFZ4hlSQNYmUJWCmlxdnz8oi4CTgaWBYR41NKSyJiPLB8B9teBlwGMHPmzO2GMEmwfG0bl/3lGa6+5znau3p488v34WOv2Z8DxzVy9QdnGa7UJ0Y1VPOT84/h4v99jMvveJbHl67jO2cfzkjPmEqSBqk+D1gRUQ/kUkrrsunXA/8K3AycB3wle/5lX9cmDQbPt2zi+39+mmvvW0h3T+K0Gfvw0dfsz37NDeUuTUNUZT7Hl956KIfsM4x/vmkOp37rL3zjrBmcOH10uUuTJKnoynEGayxwU/bteQXw05TSbyPiPuD6iDgfeA44qwy1SQPW8nVtfOe2p/jZfQtJCd5xxEQufM1+TBnlCG4qjUmTp7Bo4YI92qayeRrNp/0j77l8E2vvuZGWv14NPV3bXXfipMksXPBcMUqVJKnP9HnASik9A7xiO+2rgFP6uh5poFvf3sVlf3mGy//6DB1dPbzzqEl85KT9mDiirtylaZBbtHAB3/j9E3u8XWd3D395cgVzjj2D6a97D689eCzNjdUvWu+Trz+wGGVKktSnynkfLEkvQWd3D9feu4Dv3PYUK9d38HcvG89n3nAgU73nkPq5ynyOUw4ey5RR9fzx8eVce98Cjpw8gmOmjXQADEnSgGfAkgaYlBK3PLKU/+93jzN/1UaOmTaSy887mBmTmspdmrRH9h/TwMQRtfz1qZXMem4NTy1fz2sObLZbqyRpQDNgSQPI7AVr+NdfzeXBhS0cOLaRH77vKE46sHlojggYuaH5ew8yNZV5XnfIWA4a18htjy/nfx58nqmj6njl9OZylyZJ0l4xYEkDwPJ1bXz1N09ww+xFjGms5j/PeDnvOGIi+dwQDhipZ6+u/9ldXv/TtyaNrOOcYybz0KJW7n12NVff8xwjX/dhlq9rY0xjTbnLkyRptxmwpH6ss7uHq+6cz7f+8BTtXd18+NX78bGT96eh2v+6Gnwq8jmOnDKCg8c3cs8zq3mo+4288qu38+5jJvORV+/HmGEGLUlS/+dfaVI/NGnyFFbmRzLytR+ictQkNj59H2tu+wGf+/fn+Vy5i5NKrK6qgtccNIbf/MtZXHTZb/jxXc9xzT0LOPuoSbz/hGkO5CJJ6tcMWFI/s3D1RtpnvpexBxzH8NpKXn1AM9NOeTdc8O6i/Qy7v2kg6GpdxtfPmkFF0ziGH3cWP2p/DT+681k2zbuXdbNupm3Bwy/p9b3PliSpFAxYUj+xqaObS/80j+/95Rlqps7g+P1GcfjkJipyDlutIeoF19ltaO/i4UWtPFJ1AnXTj2VkXRWH7jOMg8Y3Ule15x9nftEgSSoFA5ZUZpuHXb/4f+fyfGsbb33FPlzyoddx1A13lrs0qV+pr67guP1GcdTUETyxbB1zFq/lr/NW8renVzJtdD0HjRvG1FF13ktLklRWBiypjJ5Yuo4v3fwodz2zioPHD+Nb7zqco6eN5L/evarcpUn9VkU+x6H7DOfQfYazan07jy5Zy+NL1vH0ig1U5XPs21zP9LENTBpRR6VhS5LUxwxYUhm0burkm7c+yU/ufo7Gmgr+3+mH8e6jJw/tYdelvTCqoZpXTW/mxP1Gs3DNRp5ctp6nV6zn8aXryOeCiSNqmTaqnqmj6xleW1nuciVJQ4ABS+pD3T2J6+5bwNd//yQtGzt49zGT+dTrDmREfVW5S9NgM8RuxJzLBVNG1TNlVD0n94xh0ZqNzF+1kfkrN/CnVSvgyRWMqKtk2uh6po6qZ/xwh3yXJJWGAUvqI3c9vYp//fVcHluylqOnjeRf3nwIh00YXu6yNFiV+EbM0H8Hicj3CluvPqCZNRs7mL9yA/NXbeShha3MXtBCPoKx7/lPvvKbxzl62giOnDLSM1ySpKIwYEkltnD1Rv79lsf4zZylTGiq5ZL3HMEbDxs3pM4uSOU0oq6KEZOrOHzyCDq6eljUspHnW9r426Lgijue4Xt/TkTAgWMbOWrqSI6Y0sTLJgxn2ugGu+1KkvaYAavIJk2ewqKFC0r2+t63ZeDY0N7FJX+axw/++iz5CD71ugP4+1ftS01lvtylSUNWVUWOfUc3sO/oBm688DM8297FgwtbuG/+au6bv5obZy/iJ3cX3mPrqvIcus8wDpswnJdlj32bDV2SpJ0zYBXZooULStotp792yRlKdhmic3kaXvZahp/wbioaR7F+zh9p+ctVfPzfVvHxvitT0m6orcpz3H6jOG6/UQB0dffw9IoNPLK4lTmLW3lkcSvX3buQH3bOB6CmMsf0MY1MH9vAgWMbOWBsIweMa2Sf4TWelZYkAQYsaY/tKESnlHhq+XruenoVLZs6GT+8hldOH834Uz4EF31oj36GQVoqj4p8jgPHNXLguEbOOHIiUBic5ukV63lkUStzl6zlyWXr+Nu8ldw4e/GW7RqqK9h/TAP7ji6MWDhlVB1TR9Xz5pOOZdEzpfvSzV4NktT/GLCklyilxILVG7nz6VUsX9fOqPoq3vLy8UwbXe832tIgkM9F4UzV2Ebe0au9dWMnTy5fxxNL1/HUsnU8sWwddz2zihsf2Bq88md+nQMrczTVVtFUV8nw2kqa6ippqq2isaaCuqr8S3qf8MsYSep/DFjSS7C0tY2/Pb2SRWs2MaymgtcfMpYDxzWSM1hJg97wukqOmjqSo6aO3Ka9rbObBas38uzKDZz1gQt55Tn/QOvGTha3bOLxpeu2WTcfQUNNBY2bH9WVW6drKmmorqCqwpslS9JAYsCS9sKS1k3c++xq5q/aSG1lnlcf0MxhE4ZRkfMPIWmoq6nMbznjtfbemzjl376yZVlXdw9r27po2djBurYu1rV3sa6tk3VtXSxcvYkN7etIL3i96oocDdUV1FXnqa+qoL66gvqqPPXVFVRPPJTnVm1gTGMNtVUOoCNJ/YEBS9pNKSXuenoVY955MdfPWkRNZY7j9h3FjElNfsMsabdU5HOMrK9i5A5uLt7Tk1jf0VUIX1nwWt/WxYaOLja0d7N44yY2tHfRk6Wwce/5Kq/+//4EQGN1Bc3DqhnTWM3YYTWMaaxmTGMNY4ZV09yrraG6wu7LklRCBixpF9q7uvn1Q0u44o5nmbtkLZWjJvLK6aM5bJ/hBitJRZXLBcNqKhlWUwnUbnedlBJtnT1s6OjiG588j5/84maWr2tj+dr2Lc8PLGhh+bo22jp7XrR9XVV+awAbVsPYzeFr2NYQNnZYDfXV/okgSXvDd09pB5a0buJn9y3kmnsWsGJdOweMbeArb38ZZx+/P0f8Zk65y5P0UkVuQJ7JiQhqq/LUVuVpe+4hzpw5acfrVteTbxhBRf1I8g0jyTeMYG3DKFY0bJ4vPHKVNS/atqd9I9G2luMOP4Sxw2oYP7yWCU017NNUm03XMqzWs2GS9EIGLKmXru4e/vTECq69dwG3P7GcngSvPqCZ88+cxiunjyYiOLu7s9xlSiqG1FPS+xZCH4zyV4TfIaVER3cPG9q7Wd/exYb2zV0Sm/jbrffT9fKDuf+5NSxbu4TO7m2vEKuryrNPU23hMbxmy/SkEbVMHlXH2MYact6YWdIQY8DSkJdSYvaCFn754GL+9+ElrNrQQXNjNR85aT/eOXMyk0fVlbtESSqZiKC6Ik91Rf5F14b98mNf5Rf/Uxiko6cnsXJ9O4tbNrGktY3nWzbxfEv23LqJuc+vZeX69m22r8rnmDiilkkj65icPSaN3DrfWFPZZ7+nJPUVA5aGpM7uHu6bv5pb5y7j1rnLWLRmE9UVOV578FjeOmMfTj5oDJV5r6+SpM1yuWDMsBrGDKvh8B2s09bZzdLWNhau2ciC1YXHwuz5wYUttG7atgfAiLpKJo+sY2KvADZlZB2TRtaxT1Mtec9+SRqADFgaEnrfDPhv81bylydXsLati6qKHCfuP5p/eO0BvP7QsX6bKkkvQU1lnqmj65k6un67y1s3dm4TvjYHsEcXt/K7OUvp6tnaBbEyH0wcUQhbU0bWMWVUNj2qEMTqqvwTRlL/5LtTP5FSoq2rh00d3Wzs6Co8d3azqaPw6Ozpobsn0Xz653n/D++lvauHjq4eOrp7SAkq8kFlLkdlRVCRy1GZDyrzOaqy+6c01FQwrKZwA8uG6q03sGyqq6SprpIRdVXUVA6ee6i0d3Uz9/m1PLiwhQcXtjBr/hoWt2wCYOywal5/6Dhed8hYXjl9tB/SkrQjfTAQyMRJk1m44Dm6untY0trGwtUbeW5zAFu1kedWb+CBBWtY19a1zXajG6qZMmrrGa8po7aGsOaGagffkFQ2/mXZh7p7Ems3ddKyqZOWjR20bOqkdWNhfl1bJz0vvLtkpqYiR0U+Rz4XVIzch5XrO6iuyMJTTQUBdPUkOrt7aOvsoau7i87uwnx7Vw8b2gv3VOnofvFwvdv8nMocTbVV24SuwnQVTbWF+eHbtFfSVFtV1qHKWzd1sjD7BvTpFet5Ytl6nly6jmdWrt9yMfa4YTUcPrmJD796X47bbzT7Ndf7wStJu6MPBwKpyOeYlIWl47ezXsvGDp5btfXM13OrNrBg9UbufmYVNz24mNTrM7S2Ml/ocjiqjt/dcA1rFj5FV8sSulqW0tW6HHq6tvMT9s7mgChJmxmwSmRDexcr17ezfF07K9a1s2J9O60bO+mdoaryOZrqKhnbWM30MQ3UVeWpq6ooDL9bmacue+49AtMnv/xGfp12HpR2KF9JrrqOXHX91ueaBnI1jeRqC4+No8Zx2JvfRuumDp5avp6WjYUw2LWj9AfUV+ULIWxz6OoVyJrqKhlWW1kIhNkZtfeddx4rli4mdXeSujqJXA5yFUQuT+TykC9Mk6sgV1lNVNeTqynUmq9rIt8wgnz9CPINo8jXNm5TS2fLUirWL+fCc97GKyYOZ8akEYwb/uLhhyVJ/UQxzpLlK6kYPoaKpvFUNo2jomkcq5rG80jTOCr2P5FRB792648D6qs39+Yo9PBorO7Vu6OmgrqqPLndrKnkI0VKGnAMWEXSsrGDH/z1Gcac8SUu/+szbOjo3rJsWE0FzY3VHDCmcUsIGV5bSW1lfs8/VEr8beInX38gl//84m1/ZEps6OhmzYYOWjd1smZjx5bg1bKxkzUbO2nZtLVtScvaLWfptpfL8if/H8btRW0VudgSQuur89RXVTC8thDghmePqorpfPL1B/J/r/7c3u0ASVLf6oPPtX/91aO0buosPDZ2sq69k/VtXaxY386zKze86EvEXGwNYfXVFdRnnz2Fz6BsurowLUkvZMAqkop8jsv+8gz5xlGF/t+N1YxprGZ0Q/WAv7YpIgrXcVVXsOPbWb5YT09iXXsXazd10tGdXTPW1cMxx53AhV+/hu6eRHdKBIXRqXIR5ILCcy7IR1CRC6orC2e+KnKO6idJ2nObP8MmNNW+aNnma6DXt3VtCV7rs67169u6WLW+nYUd3bR3bb/3yMSLruPkr/+J0Q3VjKqv2tKjY0TWjX5zz44R2XPhy0A/z6TBzIBVJA3VFcz58huoqazgMyXurz5Q5HKx5cxSb+2L5zJppPeWkiSVX0RQW1nokt/cWL3D9bp6etjY0Z09utjYXpj+3fU3c/BRH2LF+nbmLV/Pmo2dtG7qeNFNmXtrqK5gWE2hS2JjTUX2qNzmedh22rZMV1d4A2epHzNgFVF1xcA+UwX0yYhRkiQNNBW5HMNqcgx7we08rrvtMr77h+9v07a5a/3WrvRbu9GvyebXtXWxrq2TdW1drFzfwbMrN2Rtux6UCthyDdkLw9mwmootXeeH1VQyrLYie966bFiNZ9GkUjJgaVt9OGKUJEmDUe+u9RNH7Pn2bZ3d2wSwN7/9LFav3VAY9CkbpGpt9hzbDF7VUHiuaSDyO/8Tr6ejjZ72DfS0r6cydXHyicduE8yG1xauGR9ZX8WI+ipG1FUxsq6KxhrPnkm7YsCSJEnaW33U82NPvvxMKdHVk2jv6qG9s3D9WOHRTXtnr+muHto7e3jkvjv47Z/uLIzYm40wHLnt98pJPd30bFpH96a19GxaR8+mtdl04dG9cW2v5YXHPs2jWLhgfpH2hNT/GbAkSZL2Vj/s+RERVOaDynyOhupd/6l326f/eZvfIaVER3ZvzU2d3bR1dBeeOwvPmzpH0NbZ86L2Hd3RJfV0c8T/u5UR2b00C2fEdjS9dUCQvGfKNEAZsCRJkrRFRFBdkae6Iv+igap25EWhrFcwu/mq/+acf/hHWjZ2snpDBwtXb+ThRYXr0Tp2MDpjBAyrKXRRbKqrZGQ2AmNjr+vINk8XBgXZdr7Y18VPmjyFRQsXFPU1e/OG1YNLvwtYEXEq8G0gD1yeUvpKmUuSJEnSTuwslP3kjp/y73+9evvbVdaQq20kXzuMXO2wbaZba4fxfG0jubphhbbqeqKmcJ1ZxM4H6ajMF0aH3Hz/strsHma1VRXUVea33MesrqoiW2/r8qqKHNUVuS3P1RU5lndU8k83Pkw+Fy9+RLzkbqJenz649KuAFRF54LvA64BFwH0RcXNKaW55K9OA4kiIkiT1H0XuRrn5bFnH5mvLOnu45PN/zzU/v5G1mwr339zQ0c2mjq7CsPqd3WzKhtdv3djBkmy4/U2dhba2zl2P2jj+fd/m6nt2fAard9jK5wr38XxhEHtRW2ydbnrlOXzntqeoqshRlc9t+/zC6Wy+utd8ZX7bdv8OKq9+FbCAo4F5KaVnACLiOuA0wICl3Vfi/vB+yyRJUvn0PlvWmLVtevo+3nb4xL16vZ6eRFtXFro6urcMArI5wHV09XDqm97M+750Cd09hQFEunsS3anXdPbo6unZZr73+h1dPdu09aSt6ww79ky+ceuTRdtHlfnYbiirfEEw27pOfst09ZbQFlTl89u8RnW2zuZgmAvIxebpIJe15bdMB/lcYZ1t12PLmb+tZwHZsn0ugsj+raPXz9jdLqvl1t8C1gRgYa/5RcAxZapFkiRJg1wuF1lXwh3/Wbzp6XuZPrZxh8tfqk++4WAAoqKSyBce5CuJfEVhvnd7r+nI1uEF62zdprCsflgTbzntdDqywNjRVbhebu2mrsJ8dkZwy3M23b2jkUvKIG1YxXP/dW65y9gtkVL/2XERcQZwakrpg9n8e4FjUkof67XOBcAF2eyBQGmH7tm10cDKMtcwVLiv+5b7u2+5v/uO+7pvub/7lvu777iv+1Z/3N9TUkrNL2zsb2ewFgOTes1PzNq2SCldBlzWl0XtTETMSinNLHcdQ4H7um+5v/uW+7vvuK/7lvu7b7m/+477um8NpP298yFY+t59wPSImBYRVcC7gJvLXJMkSZIk7ZZ+dQYrpdQVER8DfkdhmPYrU0qPlrksSZIkSdot/SpgAaSUbgFuKXcde6DfdFccAtzXfcv93bfc333Hfd233N99y/3dd9zXfWvA7O9+NciFJEmSJA1k/e0aLEmSJEkasAxYeykiTo2IJyJiXkR8ttz1DDYRcWVELI+IOb3aRkbErRHxVPY8opw1DiYRMSkibo+IuRHxaERclLW7z4ssImoi4t6IeCjb11/O2qdFxD3Ze8rPsoF+VCQRkY+IByLi19m8+7tEImJ+RDwSEQ9GxKyszfeSEoiIpoj4RUQ8HhGPRcRx7uvSiIgDs2N682NtRHzC/V06EfEP2efknIi4Nvv8HBDv3QasvRAReeC7wBuBQ4CzI+KQ8lY16PwIOPUFbZ8FbkspTQduy+ZVHF3Ap1JKhwDHAh/Njmn3efG1AyenlF4BzABOjYhjga8C30wp7Q+sAc4vX4mD0kXAY73m3d+l9ZqU0oxeQyr7XlIa3wZ+m1I6CHgFhWPcfV0CKaUnsmN6BnAksBG4Cfd3SUTEBODjwMyU0mEUBr97FwPkvduAtXeOBuallJ5JKXUA1wGnlbmmQSWl9Bdg9QuaTwOuyqavAk7vy5oGs5TSkpTS7Gx6HYUP6Qm4z4suFazPZiuzRwJOBn6RtbuviygiJgJ/B1yezQfu777me0mRRcRw4FXAFQAppY6UUgvu675wCvB0Suk53N+lVAHURkQFUAcsYYC8dxuw9s4EYGGv+UVZm0prbEppSTa9FBhbzmIGq4iYChwO3IP7vCSy7moPAsuBW4GngZaUUle2iu8pxfUt4B+Bnmx+FO7vUkrA7yPi/oi4IGvzvaT4pgErgB9m3V8vj4h63Nd94V3Atdm0+7sEUkqLga8BCygEq1bgfgbIe7cBSwNSKgx/6RCYRRYRDcANwCdSSmt7L3OfF09KqTvrZjKRwhnxg8pb0eAVEW8GlqeU7i93LUPIiSmlIyh0o/9oRLyq90LfS4qmAjgCuDSldDiwgRd0T3NfF192zc9bgZ+/cJn7u3iya9lOo/BFwj5APS++dKTfMmDtncXApF7zE7M2ldayiBgPkD0vL3M9g0pEVFIIV9eklG7Mmt3nJZR157kdOA5oyrpBgO8pxXQC8NaImE+hO/fJFK5bcX+XSPbNMyml5RSuUTka30tKYRGwKKV0Tzb/CwqBy31dWm8EZqeUlmXz7u/SeC3wbEppRUqpE7iRwvv5gHjvNmDtnfuA6dlIJlUUThXfXOaahoKbgfOy6fOAX5axlkEluyblCuCxlNI3ei1ynxdZRDRHRFM2XQu8jsI1b7cDZ2Srua+LJKX0uZTSxJTSVArv1X9MKb0H93dJRER9RDRungZeD8zB95KiSyktBRZGxIFZ0ynAXNzXpXY2W7sHgvu7VBYAx0ZEXfY3yubje0C8d3uj4b0UEW+i0K8/D1yZUrq4vBUNLhFxLXASMBpYBnwR+B/gemAy8BxwVkrphQNhaC9ExInAX4FH2HqdyucpXIflPi+iiHg5hQtz8xS+5Lo+pfSvEbEvhTMsI4EHgHNSSu3lq3TwiYiTgE+nlN7s/i6NbL/elM1WAD9NKV0cEaPwvaToImIGhcFbqoBngPeTva/gvi667EuDBcC+KaXWrM1ju0Sy25i8k8JIxw8AH6RwzVW/f+82YEmSJElSkdhFUJIkSZKKxIAlSZIkSUViwJIkSZKkIjFgSZIkSVKRGLAkSZIkqUgMWJKkQSsiTo+IFBEHlbsWSdLQYMCSJA1mZwN3ZM+SJJWcAUuSNChFRANwInA+8K6sLRcRl0TE4xFxa0TcEhFnZMuOjIg/R8T9EfG7iBhfxvIlSQOUAUuSNFidBvw2pfQksCoijgTeDkwFDgHeCxwHEBGVwH8BZ6SUjgSuBC4uR9GSpIGtotwFSJJUImcD386mr8vmK4Cfp5R6gKURcXu2/EDgMODWiADIA0v6tlxJ0mBgwJIkDToRMRI4GXhZRCQKgSkBN+1oE+DRlNJxfVSiJGmQsougJGkwOgP4SUppSkppakppEvAssBp4R3Yt1ljgpGz9J4DmiNjSZTAiDi1H4ZKkgc2AJUkajM7mxWerbgDGAYuAucDVwGygNaXUQSGUfTUiHgIeBI7vs2olSYNGpJTKXYMkSX0mIhpSSusjYhRwL3BCSmlpueuSJA0OXoMlSRpqfh0RTUAV8P8MV5KkYvIMliRJkiQViddgSZIkSVKRGLAkSZIkqUgMWJIkSZJUJAYsSZIkSSoSA5YkSZIkFYkBS5IkSZKKxIAlSZIkSUViwJIkSZKkIjFgSZIkSVKRGLAkSZIkqUgMWJIkSZJUJAYsSdKgERHzI2JTRKzv9din3HVJkoaOinIXIElSkb0lpfSHPd0oIgKIlFJPCWqSJA0RnsGSJA1aETEiIn4dESsiYk02PbHX8j9FxMUR8TdgI7BvRBwUEbdGxOqIeCIizirfbyBJGmgMWJKkwSwH/BCYAkwGNgH//YJ13gtcADQCK4BbgZ8CY4B3AZdExCF9VbAkaWAzYEmSBpv/iYiWiGgBrkgp3ZBS2phSWgdcDLz6Bev/KKX0aEqpCzgVmJ9S+mFKqSul9ABwA3Bmn/4GkqQBy2uwJEmDzembr8GKiLqI+D6F4DQiW94YEfmUUnc2v7DXtlOAY7JwtlkF8JMS1yxJGiQMWJKkwexTwIHAMSmlpRExA3gAiF7rpF7TC4E/p5Re13clSpIGE7sISpIGs0YK1121RMRI4Iu7WP/XwAER8d6IqMweR0XEwSWvVJI0KBiwJEmD2beAWmAlcDfw252tnF2n9XoKg1s8DywFvgpUl7RKSdKgESmlXa8lSZIkSdolz2BJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQVyYC+0fDo0aPT1KlTy12GJEmSpCHm/vvvX5lSan5h+4AOWFOnTmXWrFnlLkOSJEnSEBMRz22v3S6CkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkFeUuYKi48KJPsaJl3XaXNTc1csm3v97HFUmSJEkqNgNWH1nRso7jz/n0dpfdefXX+rgaSZIkSaVgF0FJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRVKygBURNRFxb0Q8FBGPRsSXs/ZpEXFPRMyLiJ9FRFXWXp3Nz8uWTy1VbZIkSZJUCqU8g9UOnJxSegUwAzg1Io4Fvgp8M6W0P7AGOD9b/3xgTdb+zWw9SZIkSRowShawUsH6bLYyeyTgZOAXWftVwOnZ9GnZPNnyUyIiSlWfJEmSJBVbSa/Bioh8RDwILAduBZ4GWlJKXdkqi4AJ2fQEYCFAtrwVGFXK+iRJkiSpmEoasFJK3SmlGcBE4GjgoJf6mhFxQUTMiohZK1aseKkvJ0mSJElF0yejCKaUWoDbgeOApoioyBZNBBZn04uBSQDZ8uHAqu281mUppZkppZnNzc2lLl2SJEmSdlspRxFsjoimbLoWeB3wGIWgdUa22nnAL7Ppm7N5suV/TCmlUtUnSZIkScVWsetV9tp44KqIyFMIctenlH4dEXOB6yLi34AHgCuy9a8AfhIR84DVwLtKWJskSZIkFV3JAlZK6WHg8O20P0PheqwXtrcBZ5aqHkmSJEkqtT65BkuSJEmShgIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkoqkZAErIiZFxO0RMTciHo2Ii7L2L0XE4oh4MHu8qdc2n4uIeRHxRES8oVS1SZIkSVIpVJTwtbuAT6WUZkdEI3B/RNyaLftmSulrvVeOiEOAdwGHAvsAf4iIA1JK3SWsUZIkSZKKpmRnsFJKS1JKs7PpdcBjwISdbHIacF1KqT2l9CwwDzi6VPVJkiRJUrH1yTVYETEVOBy4J2v6WEQ8HBFXRsSIrG0CsLDXZovYeSCTJEmSpH6l5AErIhqAG4BPpJTWApcC+wEzgCXA1/fw9S6IiFkRMWvFihXFLleSJEmS9lpJA1ZEVFIIV9eklG4ESCktSyl1p5R6gB+wtRvgYmBSr80nZm3bSCldllKamVKa2dzcXMryJUmSJGmPlHIUwQCuAB5LKX2jV/v4Xqu9DZiTTd8MvCsiqiNiGjAduLdU9UmSJElSsZVyFMETgPcCj0TEg1nb54GzI2IGkID5wIcAUkqPRsT1wFwKIxB+1BEEJUmSJA0kJQtYKaU7gNjOolt2ss3FwMWlqkmSJEmSSqlPRhGUJEmSpKHAgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiKVnAiohJEXF7RMyNiEcj4qKsfWRE3BoRT2XPI7L2iIjvRMS8iHg4Io4oVW2SJEmSVAqlPIPVBXwqpXQIcCzw0Yg4BPgscFtKaTpwWzYP8EZgeva4ALi0hLVJkiRJUtGVLGCllJaklGZn0+uAx4AJwGnAVdlqVwGnZ9OnAT9OBXcDTRExvlT1SZIkSVKx9ck1WBExFTgcuAcYm1Jaki1aCozNpicAC3tttihrkyRJkqQBoeQBKyIagBuAT6SU1vZellJKQNrD17sgImZFxKwVK1YUsVJJkiRJemlKGrAiopJCuLompXRj1rxsc9e/7Hl51r4YmNRr84lZ2zZSSpellGamlGY2NzeXrnhJkiRJ2kOlHEUwgCuAx1JK3+i16GbgvGz6POCXvdrPzUYTPBZo7dWVUJIkSZL6vYoSvvYJwHuBRyLiwazt88BXgOsj4nzgOeCsbNktwJuAecBG4P0lrE2SJEmSiq5kASuldAcQO1h8ynbWT8BHS1WPJEmSJJVan4wiKEmSJElDgQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkuxWwIuKE3WmTJEmSpKFsd89g/ddutkmSJEnSkFWxs4URcRxwPNAcEZ/stWgYkC9lYZIkSZI00Ow0YAFVQEO2XmOv9rXAGaUqSpIkSZIGop0GrJTSn4E/R8SPUkrP9VFNkiRJkjQg7eoM1mbVEXEZMLX3Nimlk0tRlCRJkiQNRLsbsH4OfA+4HOguXTmSJEmSNHDtbsDqSildWtJKJEmSJGmA291h2n8VERdGxPiIGLn5UdLKJEmSJGmA2d0zWOdlz5/p1ZaAfYtbjiRJkiQNXLsVsFJK00pdiCRJkiQNdLsVsCLi3O21p5R+XNxyJEmSJGng2t0ugkf1mq4BTgFmAwYsSZIkScrsbhfB/9N7PiKagOtKUZAkSZIkDVS7O4rgC20AvC5LkiRJknrZ3WuwfkVh1ECAPHAwcH2pipIkSZKkgWh3r8H6Wq/pLuC5lNKiEtQjSZIkSQPWbnURTCn9GXgcaARGAB2lLEqSJEmSBqLdClgRcRZwL3AmcBZwT0ScUcrCJEmSJGmg2d0ugv8EHJVSWg4QEc3AH4BflKowSZIkSRpodncUwdzmcJVZtattI+LKiFgeEXN6tX0pIhZHxIPZ4029ln0uIuZFxBMR8YY9+i0kSZIkqR/Y3TNYv42I3wHXZvPvBG7ZxTY/Av6bF9+M+Jsppd6DZhARhwDvAg4F9gH+EBEHpJS6d7M+SZIkSSq7nQasiNgfGJtS+kxEvB04MVt0F3DNzrZNKf0lIqbuZh2nAdellNqBZyNiHnB09nMkSZIkaUDYVRfBbwFrAVJKN6aUPplS+iRwU7Zsb3wsIh7OuhCOyNomAAt7rbMoa5MkSZKkAWNXAWtsSumRFzZmbVP34uddCuwHzACWAF/f0xeIiAsiYlZEzFqxYsVelCBJkiRJpbGrgNW0k2W1e/rDUkrLUkrdKaUe4AcUugECLAYm9Vp1Yta2vde4LKU0M6U0s7m5eU9LkCRJkqSS2VXAmhURf//Cxoj4IHD/nv6wiBjfa/ZtwOYRBm8G3hUR1RExDZhO4b5bkiRJkjRg7GoUwU8AN0XEe9gaqGYCVRQC0g5FxLXAScDoiFgEfBE4KSJmAAmYD3wIIKX0aERcD8wFuoCPOoKgJEmSpIFmpwErpbQMOD4iXgMcljX/b0rpj7t64ZTS2dtpvmIn618MXLyr15UkSZKk/mq37oOVUroduL3EtUiSJEnSgLara7AkSZIkSbvJgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkorEgCVJkiRJRWLAkiRJkqQiMWBJkiRJUpEYsCRJkiSpSAxYkiRJklQkBixJkiRJKpKKchcgePCB2Zx53gXbXdbc1Mgl3/56H1ckSZIkaW8YsPqBjm44/pxPb3fZnVd/rY+rkSRJkrS37CIoSZIkSUVSsoAVEVdGxPKImNOrbWRE3BoRT2XPI7L2iIjvRMS8iHg4Io4oVV2SJEmSVCqlPIP1I+DUF7R9FrgtpTQduC2bB3gjMD17XABcWsK6JEmSJKkkShawUkp/AVa/oPk04Kps+irg9F7tP04FdwNNETG+VLVJkiRJUin09TVYY1NKS7LppcDYbHoCsLDXeouyNkmSJEkaMMo2yEVKKQFpT7eLiAsiYlZEzFqxYkUJKpMkSZKkvdPXAWvZ5q5/2fPyrH0xMKnXehOzthdJKV2WUpqZUprZ3Nxc0mIlSZIkaU/0dcC6GTgvmz4P+GWv9nOz0QSPBVp7dSWUJEmSpAGhZDcajohrgZOA0RGxCPgi8BXg+og4H3gOOCtb/RbgTcA8YCPw/lLVJUmSJEmlUrKAlVI6eweLTtnOugn4aKlqGYouvOhTrGhZt91lzU2NXPLtr/dxRZIkSdLgV7KApfJa0bKO48/59HaX3Xn11/q4GkmSJGloKNsogpIkSZI02BiwJEmSJKlI7CLYT7Ru6mRJ6yaWtraxdG0bQTBhRC3rqsewvr2Lhmr/qSRJkqT+zr/ay6ytsxuOOJMf3TkfgMp8MKaxhp6UeGDBGnpGHscrvvx73nvsFP7x1AOpq/KfTJIkSeqv/Gu9jBas3sjv5y6F8Qdz9LSR7N/cwKj6KnK5AKCzu4c/3PATjnzjO/nRnfP54+PL+eo7Xs5x+40qc+WSJEmStsdrsMqgJyX+8uQKbnpgMdX5PNzxA47bdxTNjdVbwhVAZT7H8I4V/MfbX87PLjiWCDj7B3fzxV/OobO7p4y/gSRJkqTtMWCVwR1PreSBhS28fMJwzj56ErQu2eU2x+w7it9e9Cref8JUrrrrOT5+7QOGLEmSJKmfMWD1sQcWrOGBhS3MmNTEaw4aQ0V+9/8JaqvyfPEth/KFNx/Cb+Ys5WM/nU1HlyFLkiRJ6i8MWH1o3vL1/OWplezXXM8rp4/e69c5/8RpfPEth/C7R5fxUUOWJEmS1G8YsPrI+soR/PbRpYwbVsMbDh1HLmLXG+3E+0+Yxpffeii3zl3GRdc9QE9PKlKlkiRJkvaWAasPrG3rZN6Io2ioruAtrxhP5R50C9yZ846fyj+96WB+M2cp37rtqaK8piRJkqS95zDtfeA/bnmMzlwNpx46ruj3sfrgK6fxxLJ1fOe2pzhoXCNvetn4or6+JEmSpN3nGawSu+OplVx770LGbZjHuOE1RX/9iODitx3GEZOb+NT1D/Ho861F/xmSJEmSdo8Bq4TWt3fxf294mH2b65mw7vGS/Zzqijzfe++RDK+t5IIf38+q9e0l+1mSJEmSdsyAVUJf+c1jPN+6if/vjJeTo7Qj/Y1prOGyc49kxfp2Pnn9QzjkhSRJktT3DFglcvczq7j67gWcf8I0jpwysk9+5ssnNvGFvzuYPz+5gmX1+/bJz5QkSZK0lYNclEB3T+JLNz/KhKZaPvX6A1/Saz34wGzOPO+C7S5rbmrkkm9/fZu2c46dwl+eWskfHu1h+do2xgwr/nVfkiRJkrbPgFUCP5+1kMeXruO/3304tVX5l/RaHd1w/Dmf3u6yO6/+2ovaIoL/fMfLOfqR+fzm0aWcfdRkqio8USlJkiT1Bf/yLrJ1bZ187fdPMnPKCP6uTEOmj6ivYt+W+2nZ2Mmfn1xRlhokSZKkociAVWSX/OlpVq5v5wtvPoSIKFsdwzpWcfTUkcxdspYnlq4rWx2SJEnSUGLAKqKFqzdyxR3P8rbDJ/CKSU3lLodjpo1k/PAa/vj4clo3dZa7HEmSJGnQM2AV0Vd++zi5gH889aUNbFEsuVxw6qHjAPjtnKV09zh4uyRJklRKBqwieXblBm55ZAkfetV+jB9eW+5ythhWW8kpB49h6do27nl2VbnLkSRJkgY1RxEskmmj67npwhM4YGxDuUt5kQPGNvLcqo3cN38Nk0bUlbscSZIkadDyDFYRzZjURF1V/8ysJx3YzIi6Sn43dymdUVXuciRJkqRByYA1RFTmc5x62DjaOnqY3zSDlLweS5IkSSq2sgSsiJgfEY9ExIMRMStrGxkRt0bEU9nziHLUNpiNaazhhP1H0VIznqvunF/uciRJkqRBp5xnsF6TUpqRUpqZzX8WuC2lNB24LZtXkc2Y1MTwtqX8+y2PM/f5teUuR5IkSRpU+lMXwdOAq7Lpq4DTy1fK4BURTGt9gKa6Sv7PtbPZ2NFV7pIkSZKkQaNcASsBv4+I+yPigqxtbEppSTa9FBhbntIGv8qeDr71zhk8s3ID/3zTHK/HkiRJkoqkXAHrxJTSEcAbgY9GxKt6L0yFv/i3+1d/RFwQEbMiYtaKFSv6oNTB6fj9R3PRKdO58YHF/PTeBeUuR5IkSRoUyhKwUkqLs+flwE3A0cCyiBgPkD0v38G2l6WUZqaUZjY3N/dVyYPSx0+ezqsPaObLN8/l4UUt5S5HkiRJGvD6PGBFRH1ENG6eBl4PzAFuBs7LVjsP+GVf1zbU5HLBt945g+bGaj5y9WzWbOgod0mSJEnSgFaOu+KOBW6KiM0//6cppd9GxH3A9RFxPvAccFYZahsSHnxgNmeed8GW+WGVTTw+6kRe/6XruPur7yWfizJWJ0mSJA1cfR6wUkrPAK/YTvsq4JS+rmco6uiG48/59DZt4xe18scn8vzHLY/xz28+pEyVSZIkSQNbfxqmXWX0sonDGbPhGS6/41l+eo+DXkiSJEl7w4ClLSavncNJBzbzhV/O4Y6nVpa7HEmSJGnAKcc1WCqSF15Ltc2yhx/m+D18vSDxX2cfzhmX3sVHrrmfmy48nv3HNL70QiVJkqQhwoA1gG3vWqrN7v3Eu/fqNRtrKrnifTM5/bt3ct6V9/GzDx3LxBF1L6VMSZIkaciwi6BeZOKIOn70/qNY29bJey6/h2Vr28pdkiRJkjQgGLC0XYdNGM5VHzialevaec/l97BqfXu5S5IkSZL6PQOWduiIySO44n1HsWjNRs654l5aNnojYkmSJGlnDFjaqWP3HcVl753J0yvWc8b37mJxy6ZylyRJkiT1WwYs7dKrDmjmqvcfzbK1bbzjkjt5fOnacpckSZIk9UsGLO2W4/Ybxc8/fByJxJnfu4u7n1lV7pIkSZKkfseApd120Lhh3HjhCYwdVsN7r7iHq+6cT0qp3GVJkiRJ/YYBS3tkQlMtN3z4eF41vZkv3vwoH7l6Nq2bOstdliRJktQvGLC0x4bXVXL5eTP5pzcdzB8eW8ab/+uvPLBgTbnLkiRJksrOgKW9EhH8/av25foPH0dPD7z90jv5wv/M8WyWJEmShjQDll6SIyaP4DefeCXnHTeVa+55jlO+/iduemCR12ZJkiRpSDJg6SUbVlPJl956KDd/7EQmNNXyDz97iLf89x38ds5SenoMWpIkSRo6KspdgAaPwyYM58YLT+DG2Yv47u3z+PDV93PQuEYufM3+nHroOKoqts3zF170KVa0rHvR6zQ3NXLJt7/eV2XvsI5y1CJJkqSBzYCl3bK7ISSfC86cOYm3HT6BXz38PP/9x3l8/NoHGFlfxekzJnDWURM5aNwwAFa0rOP4cz79ote78+qvle4X2Y4d1VGOWiRJkjSwGbC0W/Y0hFTkc7zt8In8/kffJLeplpWbJvPDO9q48m/PUtvZSlP7MpYvWM2xKZGLKHX5kiRJUp8wYBXZjs70PPjwwxxfhnrKbWXLOt50zocA2NTRzeNL1/L0ilqebx1OOuYAfvDXZ5jQVMv44bWMH17DmMbqMlcsSZIk7T0DVpHt6EzPvZ94dxmq2TMPPjCbM8+7YPvLihAQa6vyHD55BIdPHkFbZzff++ZXmPZ35/N8axtPr9gAQARUjz6Zj14zmwPGNjJ1dB37NNWyT1MtYxurqcg7LoskSZL6LwOWtujoZofdAIsdEGsq8/D8o7z+0HEAbOzoYklrG8vWtvHU40uY83wrt8xZQu/R3nMBYxprGN9Uwz7Daxk3vIYRdZUMr6uiqbaSprpKRtRVMTybbqiuIOx+KEmSpD5kwFK/UFdVwX7NDezX3AB33cvPv/VBNnV0s2jNRp5vbeP5lk0sadm0ZXrukrXc/sRyNnZ07/A1I/WQ7+mgInVSG90cediBjKirZGR9FU11VYysLwSydZUjad3USX11noqcZ8gkSZK09wxY6rdqq/JMH9vI9LGNO1ynvaub1o2dtGzq5OP/dDH7n3wWbZ3dtHf2sKmzm7auwvTShc+yuGUTcxa3snpjBx1dPVtfZPQrefzO+YWfWZmnobqChpoKGqorWN1wADc9sIgpo+qZNqqeprpKz4pJkiRphwxYGtCqK/KMGZZnzLAaGjtXF86AbcedD13Dz7/5PgBSSmzq7Gb1hg7WbOjkU1/+TyafeDrr27tY39bF+vYu1rV1sqR1E22NB/MPP3toy+sMq6lg2uh6ls9/gtjUSnX3emq6NlDdvYGKng4C750lSZI0lBmwNOREBHVVFdRVVTBxBAzvWMGh+wzf7rrf/cy5HHTE8bRX1NNWUU/7hgaeba1nbXc10XggvS4Ro6oiR1NtJU8vf5qv/e4JpoyqY9roeqaMqmd0Q5VnviRJkoYAA5ZesmKPPriz19vbs0N7W2NnZxennP3hF7V/6xPv5mPfuIa1mwrdE1s2dtCyqZPWjZ0srWzi0j8/TXfP1vhVX5Vn8qh69hlew7jhNezTVBiWftzwrQN21FTm9/j32t0bQEvaNf8/SZKKod8FrIg4Ffg2kAcuTyl9pcwlaReKPfrgzl7vkk+9e6+CUilGSMznghH1VYyorwLqt7TfefW1/PTK77F4zSaeXbWB51ZuYP6qjSxcXRiwY/aCNazZ2Pmi16uvytNUV7VlNMSmuq0jIzbWVFBbVUFdZZ66qjy1VXnqqiqYvz7HkW/7OPlckI8gl2PL9D3XfmOvfq+9taM/Tv3DVAPFnt5QXZKk7elXASsi8sB3gdcBi4D7IuLmlNLc8lam/qIvh5LfWw8+MJt3f+DFZ70ApjU18ptvf51NHd0sXdvGkpZNLGltY+natsI1YRs7aNnYyZqNHSxu2bTlzFjv4eq30XwSc+9+bvvLxp/Gfp+/hcp8UJnPUV2RozJfeKxauYKe7i4iJYIEFJ4jJaoqchxy0AHkIsjnInum13QhwOVz2fJsflbPVMYfdTgRQQAEBDB77n189bePE0AuglwA2fPm+Ygges8T3Pg/N7NhUxtBD5F6yKWeLdMj6qv5h49+iKpev1NVReF3rKnMU11ZmK7K5+yauRPFDsWeAZIkqZ8FLOBoYF5K6RmAiLgOOA0wYGnA2FkI3PwteG1Vnmmj65k2un676/XW05M44wMf5YgzPkZndw+d3YmunsLzjZd9jVPf9wl6UmG97p5Edyo8z3/wDt7+1rfQ0d1DR1dPtm1huz8tfooRkw6gJyVSgh4KzylB6/JFrG/vKrxeSnT3sGV6ydJldPUkEgERJHKF69Ai6KocR+vSdYX5BCl7ze76fbnir88WfhZs+Zm7VDUdqna8+N2X37PLl4iA6ooc1RV52jauh+4uInWTo4dc6s6CWze1lTmOPXIG1RV5aipzVFfms+2ywJa9RiG4bQ1w1RV5KrLgmesVQnsH0Qi2hNGUCr//5n3Qe74n23E9m9t6Cs8A3T2Jruzft6unZ+t8d+F5S1t36rVuT69tEl3d28539yTu757CuKOO2PozszqefvYxPnL1/TvdHshCM1t+58dyL2f4IZN6BezC7x/Ak4uf4YNXzcqC9NZtNgfxzcF8cx7u3caWtq2vd9c999LW0ftMcGGlBNRUVXLM0TPZfJFkojC4zeZpYMsx2HvZvKaZtDyyZMsrpl4brGo6ig//5H4ioCKfK3xxkctRWRFU5AoBvyIXWeAvPFfkc1TlI1u/V3suqMzWr8jlqMgXjo+K7DipzOd2Op/PxZZ9sfk4771veu9Lv2CQ1NuW98LU+/3wxe+Pia3rbbv91s/3zZ8ZKaVtPkc2L+vu2Xa9wrIXf871/iz8z29+hzXrNhV+VgQUvv4FYERDDT/75hdKuXuKpr8FrAnAwl7zi4BjylSL1C/kckE+dVFfvZ3/rksf56Bxw7a7XecdT/LpNxy43WVn3nIJx7/5pO0uu/Pq6/j5N87d/nbnXbDD8PitT7ybD3/rp9t5va/x86sue1F7Sokz3/chjn33pwpv5GnzH7uFN+9LP/tBPvQfl78oOPb0JH76jX/hjIu+tKW9p4ct4eOpu2/lve9+F+1dPbR3dheeu3r49R/+xOh9X7Y1JPQKDK2rVzB7QQvtXdn6nT20dXXvXhAcYHIBFbnCH+wddZNpXbqOyALi5tDTXjmcp1esJ5/LbfmjfvPz/GeeprOzk2Dzhx+QnQddv2EDjb0CdEppywdxZ76G51s2bQmNvT9wt/7bb/2Q7/0hDrzgNWFljKB6xLa3cNhczrr1a7n32dXbtG0TSLasH1vnAzZVDmPl+vYt629eGEBbRQPPrtxATyoEzM1fWHR1Jzp6TW8On/3NdsMXvQPutvtIUvltL+hseYfZybIXvpcOKNUzoXr7i6q6NvZtLS9BpH605yPiDODUlNIHs/n3AseklD7Wa50LgM0X4RwIPNHnhe7caGBluYvQgONxo73hcaO95bGjveFxo701WI+dKSml5hc29rczWIuBSb3mJ2ZtW6SULgNe/HV4PxERs1JKM8tdhwYWjxvtDY8b7S2PHe0NjxvtraF27OTKXcAL3AdMj4hpEVEFvAu4ucw1SZIkSdJu6VdnsFJKXRHxMeB3FIZpvzKl9GiZy5IkSZKk3dKvAhZASukW4JZy1/ES9Nvui+rXPG60NzxutLc8drQ3PG60t4bUsdOvBrmQJEmSpIGsv12DJUmSJEkDlgGrSCLi1Ih4IiLmRcRny12P+peIuDIilkfEnF5tIyPi1oh4KnsekbVHRHwnO5Yejogjyle5yikiJkXE7RExNyIejYiLsnaPHe1QRNRExL0R8VB23Hw5a58WEfdkx8fPssGkiIjqbH5etnxqWX8BlVVE5CPigYj4dTbvcaNdioj5EfFIRDwYEbOytiH7WWXAKoKIyAPfBd4IHAKcHRGHlLcq9TM/Ak59QdtngdtSStOB27J5KBxH07PHBcClfVSj+p8u4FMppUOAY4GPZu8tHjvamXbg5JTSK4AZwKkRcSzwVeCbKaX9gTXA+dn65wNrsvZvZutp6LoIeKzXvMeNdtdrUkozeg3HPmQ/qwxYxXE0MC+l9ExKqQO4DjitzDWpH0kp/QVY/YLm04CrsumrgNN7tf84FdwNNEXE+D4pVP1KSmlJSml2Nr2Owh89E/DY0U5k//7rs9nK7JGAk4FfZO0vPG42H0+/AE6JiOibatWfRMRE4O+Ay7P5wONGe2/IflYZsIpjArCw1/yirE3ambEppSXZ9FJgbDbt8aQXybrfHA7cg8eOdiHr5vUgsBy4FXgaaEkpdWWr9D42thw32fJWYFSfFqz+4lvAPwI92fwoPG60exLw+4i4PyIuyNqG7GdVvxumXRqKUkopIhzSU9sVEQ3ADcAnUkpre39J7LGj7UkpdQMzIqIJuAk4qLwVqb+LiDcDy1NK90fESWUuRwPPiSmlxRExBrg1Ih7vvXCofVZ5Bqs4FgOTes1PzNqknVm2+ZR49rw8a/d40hYRUUkhXF2TUroxa/bY0W5JKbUAtwPHUeiGs/mL1d7HxpbjJls+HFjVt5WqHzgBeGtEzKdwqcPJwLfxuNFuSCktzp6XU/hS52iG8GeVAas47gOmZyPtVAHvAm4uc03q/24GzsumzwN+2av93GyUnWOB1l6n2DWEZNczXAE8llL6Rq9FHjvaoYhozs5cERG1wOsoXL93O3BGttoLj5vNx9MZwB+TN8kcclJKn0spTUwpTaXwd8wfU0rvweNGuxAR9RHRuHkaeD0whyH8WeWNhoskIt5Eoe9yHrgypXRxeStSfxIR1wInAaOBZcAXgf8BrgcmA88BZ6WUVmd/VP83hVEHNwLvTynNKkPZKrOIOBH4K/AIW6+J+DyF67A8drRdEfFyCheU5yl8kXp9SulfI2JfCmcmRgIPAOeklNojogb4CYVr/FYD70opPVOe6tUfZF0EP51SerPHjXYlO0ZuymYrgJ+mlC6OiFEM0c8qA5YkSZIkFYldBCVJkiSpSAxYkiRJklQkBixJkiRJKhIDliRJkiQViQFLkiRJkoqkYterSJI0sEREN4Xh7Tc7PaU0v0zlSJKGEIdplyQNOhGxPqXUsIfbBIXPxZ5drixJ0g7YRVCSNOhFRENE3BYRsyPikYg4LWufGhFPRMSPgTnApIj4TETcFxEPR8SXy1u5JGmgsYugJGkwqo2IB7PpZ4EzgbellNZGxGjg7oi4OVs+HTgvpXR3RLw+mz8aCODmiHhVSukvfVy/JGmAMmBJkgajTSmlGZtnIqIS+PeIeBXQA0wAxmaLn0sp3Z1Nvz57PJDNN1AIXAYsSdJuMWBJkoaC9wDNwJEppc6ImA/UZMs29FovgP9IKX2/j+uTJA0SXoMlSRoKhgPLs3D1GmDKDtb7HfCBiGgAiIgJETGmr4qUJA18nsGSJA0F1wC/iohHgFnA49tbKaX0+4g4GLirMKgg64FzgOV9VagkaWBzmHZJkiRJKhK7CEqSJElSkRiwJEmSJKlIDFiSJEmSVCQGLEmSJEkqEgOWJEmSJBWJAUuSJEmSisSAJUmSJElFYsCSJEmSpCL5/wH8DZ8HGcrLcQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"#### One hot encoding","metadata":{}},{"cell_type":"code","source":"train = pd.get_dummies(train)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:49.129199Z","iopub.execute_input":"2023-02-14T16:28:49.129465Z","iopub.status.idle":"2023-02-14T16:28:49.143425Z","shell.execute_reply.started":"2023-02-14T16:28:49.129443Z","shell.execute_reply":"2023-02-14T16:28:49.142066Z"},"trusted":true},"execution_count":13,"outputs":[]},{"cell_type":"markdown","source":"#### Defining a function model_eval which uses RandomizedSearchCV for parameter tuning \n* Nested cross val used for training and testing to reduce the bias.\n* tqdm used to display a progress bar when performing parameter tuning.\n* Storing the score during each iteration and printing the mean score. ","metadata":{}},{"cell_type":"code","source":"def model_eval(model, param, train, y):\n outer_cv = KFold(n_splits = 5, shuffle = True, random_state = 0)\n inner_cv = KFold(n_splits = 5, shuffle = True, random_state = 0)\n random = RandomizedSearchCV(model, param, scoring = 'accuracy', n_jobs = -1, cv = inner_cv, random_state = 0)\n scores = []\n n_iter = random.n_iter\n with tqdm(total = n_iter) as pbar:\n for i in range(n_iter):\n random.set_params(n_iter = 1)\n for train_index, test_index in outer_cv.split(train, y):\n trainx, testx = train.iloc[train_index], train.iloc[test_index]\n trainy, testy = y[train_index], y[test_index]\n random.fit(trainx, trainy)\n scores.append(random.best_estimator_.score(testx, testy))\n pbar.update()\n print(random.best_params_)\n print('Average score', np.mean(scores))\n ","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:49.144828Z","iopub.execute_input":"2023-02-14T16:28:49.145466Z","iopub.status.idle":"2023-02-14T16:28:49.159012Z","shell.execute_reply.started":"2023-02-14T16:28:49.145431Z","shell.execute_reply":"2023-02-14T16:28:49.157277Z"},"trusted":true},"execution_count":14,"outputs":[]},{"cell_type":"markdown","source":"### Decision Tree used for predictions\nMean accuracy of 80.1% was obtained on the test set.\n\nParameters tuned :\n* min_samples_split- min no. of samples required tosplit the node\n* max_depth- max depth of a tree\n* criterion- gini, entropy and log_loss are the three options available for classifier","metadata":{}},{"cell_type":"code","source":"model = DecisionTreeClassifier()\nmin_samples_split = np.array(range(1, 100))\nmax_depth= np.array(range(1,100))\ncriterion = ['entropy', 'gini', 'log_loss']\nparam = {'min_samples_split': min_samples_split, 'max_depth' : max_depth, 'criterion' : criterion}\nmodel_eval(model, param, train, y)\n","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:49.161007Z","iopub.execute_input":"2023-02-14T16:28:49.161891Z","iopub.status.idle":"2023-02-14T16:28:52.772644Z","shell.execute_reply.started":"2023-02-14T16:28:49.161847Z","shell.execute_reply":"2023-02-14T16:28:52.771290Z"},"trusted":true},"execution_count":15,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [00:03<00:00, 2.78it/s]","output_type":"stream"},{"name":"stdout","text":"{'min_samples_split': 60, 'max_depth': 28, 'criterion': 'entropy'}\nAverage score 0.8006879668570711\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### Random Forest used for predcitions\nMean accuracy of 81.2% was obtained on the test set.\n\nParameters tuned :\n* min_samples_split- min no. of samples required tosplit the node\n* max_depth- max depth of a tree\n* criterion- gini, entropy and log_loss are the three options available for classifier\n* n_estimators- no. of trees in the forest","metadata":{}},{"cell_type":"code","source":"model = RandomForestClassifier()\nmin_samples_split = np.array(range(1, 100))\nmax_depth = np.array(range(1, 100))\ncriterion = ['gini', 'entropy']\nn_estimators = np.array(range(100, 400, 5))\nparam = {'min_samples_split': min_samples_split, 'max_depth': max_depth, 'criterion': criterion, 'n_estimators': n_estimators}\nmodel_eval(model, param, train, y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:28:52.774017Z","iopub.execute_input":"2023-02-14T16:28:52.775262Z","iopub.status.idle":"2023-02-14T16:29:32.242019Z","shell.execute_reply.started":"2023-02-14T16:28:52.775222Z","shell.execute_reply":"2023-02-14T16:29:32.240923Z"},"trusted":true},"execution_count":16,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [00:39<00:00, 3.95s/it]","output_type":"stream"},{"name":"stdout","text":"{'n_estimators': 155, 'min_samples_split': 47, 'max_depth': 52, 'criterion': 'gini'}\nAverage score 0.811894419684891\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### Extra Trees used for predcitions\nMean accuracy of 79.6% was obtained on the test set.\n\nParameters tuned :\n* min_samples_split- min no. of samples required tosplit the node\n* max_depth- max depth of a tree\n* criterion- gini, entropy and log_loss are the three options available for classifier\n* n_estimators- no. of trees in the forest","metadata":{}},{"cell_type":"code","source":"model = ExtraTreesClassifier()\ncriterion = ['gini', 'entropy']\nmax_depth = np.array(range(50, 150))\nmin_samples_split = np.array(range(1, 100))\nn_estimators = np.array(range(100,300, 2))\nparam = {'criterion': criterion, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'n_estimators': n_estimators}\nmodel_eval(model, param, train, y)\n","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:29:32.243517Z","iopub.execute_input":"2023-02-14T16:29:32.243846Z","iopub.status.idle":"2023-02-14T16:29:57.002277Z","shell.execute_reply.started":"2023-02-14T16:29:32.243816Z","shell.execute_reply":"2023-02-14T16:29:57.001351Z"},"trusted":true},"execution_count":17,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [00:24<00:00, 2.47s/it]","output_type":"stream"},{"name":"stdout","text":"{'n_estimators': 122, 'min_samples_split': 88, 'max_depth': 80, 'criterion': 'gini'}\nAverage score 0.7957202937668696\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### GaussianNB used for prediction\nMean accuracy of 78.3% obtained in the test set.\n\nParameters tuned:\n* var_smoothing- Adds a value to the variance of the distribution of the train set","metadata":{}},{"cell_type":"code","source":"model = GaussianNB()\nparam = {'var_smoothing': np.logspace(0,-9, num=100)}\nmodel_eval(model, param, train, y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:29:57.003486Z","iopub.execute_input":"2023-02-14T16:29:57.003789Z","iopub.status.idle":"2023-02-14T16:29:59.100106Z","shell.execute_reply.started":"2023-02-14T16:29:57.003762Z","shell.execute_reply":"2023-02-14T16:29:59.099084Z"},"trusted":true},"execution_count":18,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [00:02<00:00, 4.79it/s]","output_type":"stream"},{"name":"stdout","text":"{'var_smoothing': 0.0001}\nAverage score 0.7833469336513715\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### SVC used for prediction\nMean accuracy of 78.7% obtained in the test set.\n\nParameters tuned:\n* C- Regularization parameter. The strength of the regularization is inversely propotional to C\n* gamma- control the shape of the decision boundary.Larger value implies overfitting.\n* kernel- poly, linear and rbf are selected ","metadata":{}},{"cell_type":"code","source":"model = SVC()\nparam = {'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100],'kernel': ['rbf', 'poly', 'linear'] }\nmodel_eval(model, param, train,y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:29:59.101395Z","iopub.execute_input":"2023-02-14T16:29:59.101683Z","iopub.status.idle":"2023-02-14T16:30:34.402505Z","shell.execute_reply.started":"2023-02-14T16:29:59.101656Z","shell.execute_reply":"2023-02-14T16:30:34.401530Z"},"trusted":true},"execution_count":19,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [00:35<00:00, 3.53s/it]","output_type":"stream"},{"name":"stdout","text":"{'kernel': 'linear', 'gamma': 0.1, 'C': 0.1}\nAverage score 0.7867553825874082\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### Bagging Classifier used for prediction\nMean accuracy of 83.3% obtained in the test set.\n\nParameters tuned:\n* n_estimators- no. of estimators\n* max_features- max no. of features ","metadata":{}},{"cell_type":"code","source":"model = BaggingClassifier()\nn_estimators = np.array(range(100,300,2))\nmax_features = np.array(range(1,20))\nparam = {'n_estimators': n_estimators, 'max_features': max_features}\nmodel_eval(model, param, train, y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:30:34.403950Z","iopub.execute_input":"2023-02-14T16:30:34.404245Z","iopub.status.idle":"2023-02-14T16:32:02.457156Z","shell.execute_reply.started":"2023-02-14T16:30:34.404219Z","shell.execute_reply":"2023-02-14T16:32:02.455373Z"},"trusted":true},"execution_count":20,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [01:28<00:00, 8.80s/it]","output_type":"stream"},{"name":"stdout","text":"{'n_estimators': 268, 'max_features': 7}\nAverage score 0.8328585776159688\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### XGBoost used for prediction\nMean accuracy of 81.3% obtained in the test set.\n","metadata":{}},{"cell_type":"code","source":"model = XGBClassifier(objective='binary:logistic',\n eval_metric='error')\ncv = KFold(n_splits = 5, shuffle = True, random_state = 0)\nscores = []\nfor train_index, test_index in cv.split(train, y):\n trainx, testx = train.iloc[train_index], train.iloc[test_index]\n trainy, testy = y[train_index], y[test_index]\n model.fit(trainx, trainy)\n scores.append(model.score(testx, testy))\nprint('Average score', np.mean(scores))","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:32:02.458620Z","iopub.execute_input":"2023-02-14T16:32:02.458975Z","iopub.status.idle":"2023-02-14T16:32:03.494832Z","shell.execute_reply.started":"2023-02-14T16:32:02.458940Z","shell.execute_reply":"2023-02-14T16:32:03.494004Z"},"trusted":true},"execution_count":21,"outputs":[{"name":"stdout","text":"Average score 0.8125290314481199\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### LGBM Boost used for prediction\nMean accuracy of 82.3% obtained in the test set.\n\nParameters tuned:\n* leatning_rate- learning rate of the model\n* max_depth- max_depth of the tree\n* alpha- l1 regularization\n* reg_lambda- l2 regularization\n* colsample_bytree- subsample ratio of columns when constructing each tree\n* subsample- subsample ratio\n* subsample_freq- frequency of the subsample\n* min_child_samples- min no. of data needed in a child(leaf)\n* n_estimators- no. of trees\n* num_leaves- max tree leaves","metadata":{}},{"cell_type":"code","source":"model = LGBMClassifier()\nlearning_rate = np.linspace(0.01, 0.2, 10)\nmax_depth = np.array(range(1, 10))\nalpha= np.array(range(0, 50))\nreg_lambda = np.linspace(0, 100, 10)\ncolsample_bytree = np.linspace(0.1,1, 10)\nsubsample = np.linspace(0.1, 1, 10)\nsubsample_freq = np.array(range(1, 10, 10))\nmin_child_samples = np.array(range(1,50,10))\nn_estimators = np.array(range(200, 2000,100 ))\nnum_leaves =np.array(range(2, 200, 11))\nparam= {'learning_rate': learning_rate, 'max_depth': max_depth, 'alpha': alpha, 'reg_lambda': reg_lambda, 'colsample_bytree': colsample_bytree,\n 'subsample': subsample, 'subsample_freq': subsample_freq, 'min_child_samples': min_child_samples, 'n_estimators': n_estimators,\n 'num_leaves': num_leaves}\nmodel_eval(model, param, train, y)","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:32:03.496033Z","iopub.execute_input":"2023-02-14T16:32:03.496967Z","iopub.status.idle":"2023-02-14T16:33:11.257865Z","shell.execute_reply.started":"2023-02-14T16:32:03.496929Z","shell.execute_reply":"2023-02-14T16:33:11.256212Z"},"trusted":true},"execution_count":22,"outputs":[{"name":"stderr","text":"100%|██████████| 10/10 [01:07<00:00, 6.77s/it]","output_type":"stream"},{"name":"stdout","text":"{'subsample_freq': 1, 'subsample': 1.0, 'reg_lambda': 33.33333333333333, 'num_leaves': 68, 'n_estimators': 1800, 'min_child_samples': 21, 'max_depth': 4, 'learning_rate': 0.1366666666666667, 'colsample_bytree': 0.5, 'alpha': 17}\nAverage score 0.8226476680685457\n","output_type":"stream"},{"name":"stderr","text":"\n","output_type":"stream"}]},{"cell_type":"markdown","source":"### Cat Boost used for prediction\nMean accuracy of 83.4% obtained in the test set.","metadata":{}},{"cell_type":"code","source":"model = CatBoostClassifier(verbose = 0)\ncv = KFold(n_splits = 5, shuffle = True, random_state = 0)\nscores = []\nfor train_index, test_index in cv.split(train, y):\n trainx, testx = train.iloc[train_index], train.iloc[test_index]\n trainy, testy = y[train_index], y[test_index]\n model.fit(trainx, trainy)\n scores.append(model.score(testx, testy))\nprint('Average score', np.mean(scores))\n","metadata":{"execution":{"iopub.status.busy":"2023-02-14T16:33:11.260230Z","iopub.execute_input":"2023-02-14T16:33:11.261140Z","iopub.status.idle":"2023-02-14T16:33:15.537556Z","shell.execute_reply.started":"2023-02-14T16:33:11.261101Z","shell.execute_reply":"2023-02-14T16:33:15.536433Z"},"trusted":true},"execution_count":23,"outputs":[{"name":"stdout","text":"Average score 0.8338773460548616\n","output_type":"stream"}]}]}
0119/172/119172087.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "b3a14ea7", "metadata": { "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", "execution": { "iopub.execute_input": "2023-02-14T17:32:32.929925Z", "iopub.status.busy": "2023-02-14T17:32:32.929260Z", "iopub.status.idle": "2023-02-14T17:32:32.950150Z", "shell.execute_reply": "2023-02-14T17:32:32.948767Z" }, "papermill": { "duration": 0.035085, "end_time": "2023-02-14T17:32:32.954898", "exception": false, "start_time": "2023-02-14T17:32:32.919813", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/kaggle/input/most-subscribed-1000-youtube-channels/topSubscribed.csv\n" ] } ], "source": [ "# This Python 3 environment comes with many helpful analytics libraries installed\n", "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n", "# For example, here's several helpful packages to load\n", "\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "\n", "# Input data files are available in the read-only \"../input/\" directory\n", "# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n", "\n", "import os\n", "for dirname, _, filenames in os.walk('/kaggle/input'):\n", " for filename in filenames:\n", " print(os.path.join(dirname, filename))\n", "\n", "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n", "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session" ] }, { "cell_type": "code", "execution_count": 2, "id": "d7b47379", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:32.971483Z", "iopub.status.busy": "2023-02-14T17:32:32.970659Z", "iopub.status.idle": "2023-02-14T17:32:35.368328Z", "shell.execute_reply": "2023-02-14T17:32:35.367129Z" }, "papermill": { "duration": 2.409067, "end_time": "2023-02-14T17:32:35.371309", "exception": false, "start_time": "2023-02-14T17:32:32.962242", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import plotly.express as px\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "id": "edbb7e1c", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.387695Z", "iopub.status.busy": "2023-02-14T17:32:35.387204Z", "iopub.status.idle": "2023-02-14T17:32:35.430959Z", "shell.execute_reply": "2023-02-14T17:32:35.429663Z" }, "papermill": { "duration": 0.053999, "end_time": "2023-02-14T17:32:35.433332", "exception": false, "start_time": "2023-02-14T17:32:35.379333", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Rank</th>\n", " <th>Youtube Channel</th>\n", " <th>Subscribers</th>\n", " <th>Video Views</th>\n", " <th>Video Count</th>\n", " <th>Category</th>\n", " <th>Started</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>T-Series</td>\n", " <td>234,000,000</td>\n", " <td>212,900,271,553</td>\n", " <td>18,515</td>\n", " <td>Music</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>YouTube Movies</td>\n", " <td>161,000,000</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>Film &amp; Animation</td>\n", " <td>2015</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>Cocomelon - Nursery Rhymes</td>\n", " <td>152,000,000</td>\n", " <td>149,084,178,448</td>\n", " <td>846</td>\n", " <td>Education</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>SET India</td>\n", " <td>150,000,000</td>\n", " <td>137,828,094,104</td>\n", " <td>103,200</td>\n", " <td>Shows</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>MrBeast</td>\n", " <td>128,000,000</td>\n", " <td>21,549,128,785</td>\n", " <td>733</td>\n", " <td>Entertainment</td>\n", " <td>2012</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Rank Youtube Channel Subscribers Video Views Video Count \\\n", "0 1 T-Series 234,000,000 212,900,271,553 18,515 \n", "1 2 YouTube Movies 161,000,000 0 0 \n", "2 3 Cocomelon - Nursery Rhymes 152,000,000 149,084,178,448 846 \n", "3 4 SET India 150,000,000 137,828,094,104 103,200 \n", "4 5 MrBeast 128,000,000 21,549,128,785 733 \n", "\n", " Category Started \n", "0 Music 2006 \n", "1 Film & Animation 2015 \n", "2 Education 2006 \n", "3 Shows 2006 \n", "4 Entertainment 2012 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"../input/most-subscribed-1000-youtube-channels/topSubscribed.csv\")\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "id": "f82a4739", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.449499Z", "iopub.status.busy": "2023-02-14T17:32:35.448347Z", "iopub.status.idle": "2023-02-14T17:32:35.476611Z", "shell.execute_reply": "2023-02-14T17:32:35.474911Z" }, "papermill": { "duration": 0.040694, "end_time": "2023-02-14T17:32:35.481009", "exception": false, "start_time": "2023-02-14T17:32:35.440315", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 1000 entries, 0 to 999\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Rank 1000 non-null int64 \n", " 1 Youtube Channel 1000 non-null object\n", " 2 Subscribers 1000 non-null object\n", " 3 Video Views 1000 non-null object\n", " 4 Video Count 1000 non-null object\n", " 5 Category 1000 non-null object\n", " 6 Started 1000 non-null int64 \n", "dtypes: int64(2), object(5)\n", "memory usage: 54.8+ KB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 5, "id": "c3fc7d0f", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.497545Z", "iopub.status.busy": "2023-02-14T17:32:35.497118Z", "iopub.status.idle": "2023-02-14T17:32:35.505842Z", "shell.execute_reply": "2023-02-14T17:32:35.504135Z" }, "papermill": { "duration": 0.020375, "end_time": "2023-02-14T17:32:35.508675", "exception": false, "start_time": "2023-02-14T17:32:35.488300", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "(1000, 7)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Let's find how many rows and columns are there in our data\n", "df.shape" ] }, { "cell_type": "markdown", "id": "1fa0dde1", "metadata": { "papermill": { "duration": 0.00698, "end_time": "2023-02-14T17:32:35.522870", "exception": false, "start_time": "2023-02-14T17:32:35.515890", "status": "completed" }, "tags": [] }, "source": [ "# Clean and Prepare Data\n", "Need to clean data in \"Subscribers\", \"Video Views\" and \"Video Count\" to remove \",\" and change its type to int for further analysis" ] }, { "cell_type": "code", "execution_count": 6, "id": "49081204", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.538803Z", "iopub.status.busy": "2023-02-14T17:32:35.538321Z", "iopub.status.idle": "2023-02-14T17:32:35.558736Z", "shell.execute_reply": "2023-02-14T17:32:35.557305Z" }, "papermill": { "duration": 0.031304, "end_time": "2023-02-14T17:32:35.561316", "exception": false, "start_time": "2023-02-14T17:32:35.530012", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Rank</th>\n", " <th>Youtube Channel</th>\n", " <th>Subscribers</th>\n", " <th>Video Views</th>\n", " <th>Video Count</th>\n", " <th>Category</th>\n", " <th>Started</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>T-Series</td>\n", " <td>234000000</td>\n", " <td>212900271553</td>\n", " <td>18515</td>\n", " <td>Music</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>YouTube Movies</td>\n", " <td>161000000</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>Film &amp; Animation</td>\n", " <td>2015</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>Cocomelon - Nursery Rhymes</td>\n", " <td>152000000</td>\n", " <td>149084178448</td>\n", " <td>846</td>\n", " <td>Education</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>SET India</td>\n", " <td>150000000</td>\n", " <td>137828094104</td>\n", " <td>103200</td>\n", " <td>Shows</td>\n", " <td>2006</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>MrBeast</td>\n", " <td>128000000</td>\n", " <td>21549128785</td>\n", " <td>733</td>\n", " <td>Entertainment</td>\n", " <td>2012</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Rank Youtube Channel Subscribers Video Views Video Count \\\n", "0 1 T-Series 234000000 212900271553 18515 \n", "1 2 YouTube Movies 161000000 0 0 \n", "2 3 Cocomelon - Nursery Rhymes 152000000 149084178448 846 \n", "3 4 SET India 150000000 137828094104 103200 \n", "4 5 MrBeast 128000000 21549128785 733 \n", "\n", " Category Started \n", "0 Music 2006 \n", "1 Film & Animation 2015 \n", "2 Education 2006 \n", "3 Shows 2006 \n", "4 Entertainment 2012 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cols = [\"Subscribers\", \"Video Views\", \"Video Count\"]\n", "for i in cols:\n", " df[i] = df[i].str.replace(\",\",\"\")\n", "\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 7, "id": "9ce8c384", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.577261Z", "iopub.status.busy": "2023-02-14T17:32:35.576814Z", "iopub.status.idle": "2023-02-14T17:32:35.585323Z", "shell.execute_reply": "2023-02-14T17:32:35.584324Z" }, "papermill": { "duration": 0.01939, "end_time": "2023-02-14T17:32:35.587770", "exception": false, "start_time": "2023-02-14T17:32:35.568380", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "#changing the datatype to int64\n", "for i in cols:\n", " df[i] = df[i].astype(\"int64\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "e6f46f10", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.604000Z", "iopub.status.busy": "2023-02-14T17:32:35.603538Z", "iopub.status.idle": "2023-02-14T17:32:35.619469Z", "shell.execute_reply": "2023-02-14T17:32:35.618023Z" }, "papermill": { "duration": 0.02739, "end_time": "2023-02-14T17:32:35.622345", "exception": false, "start_time": "2023-02-14T17:32:35.594955", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 1000 entries, 0 to 999\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Rank 1000 non-null int64 \n", " 1 Youtube Channel 1000 non-null object\n", " 2 Subscribers 1000 non-null int64 \n", " 3 Video Views 1000 non-null int64 \n", " 4 Video Count 1000 non-null int64 \n", " 5 Category 1000 non-null object\n", " 6 Started 1000 non-null int64 \n", "dtypes: int64(5), object(2)\n", "memory usage: 54.8+ KB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 9, "id": "01eefbe8", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.639402Z", "iopub.status.busy": "2023-02-14T17:32:35.638962Z", "iopub.status.idle": "2023-02-14T17:32:35.646208Z", "shell.execute_reply": "2023-02-14T17:32:35.645312Z" }, "papermill": { "duration": 0.018734, "end_time": "2023-02-14T17:32:35.648514", "exception": false, "start_time": "2023-02-14T17:32:35.629780", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "array(['Music', 'Film & Animation', 'Education', 'Shows', 'Entertainment',\n", " 'https://us.youtubers.me/global/all/top-1000-most_subscribed-youtube-channels',\n", " 'Gaming', 'People & Blogs', 'Sports', 'Howto & Style',\n", " 'News & Politics', 'Comedy', 'Trailers', 'Nonprofits & Activism',\n", " 'Science & Technology', 'Movies', 'Pets & Animals',\n", " 'Autos & Vehicles', 'Travel & Events'], dtype=object)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Category'].unique()" ] }, { "cell_type": "code", "execution_count": 10, "id": "3f462187", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.664741Z", "iopub.status.busy": "2023-02-14T17:32:35.664295Z", "iopub.status.idle": "2023-02-14T17:32:35.672817Z", "shell.execute_reply": "2023-02-14T17:32:35.671393Z" }, "papermill": { "duration": 0.020116, "end_time": "2023-02-14T17:32:35.675879", "exception": false, "start_time": "2023-02-14T17:32:35.655763", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:3: FutureWarning: The default value of regex will change from True to False in a future version.\n", " This is separate from the ipykernel package so we can avoid doing imports until\n" ] } ], "source": [ "#we have to replace the irregularities in the category column\n", "\n", "df['Category'] = df['Category'].str.replace('https://us.youtubers.me/global/all/top-1000-most_subscribed-youtube-channels', \"other\")\n" ] }, { "cell_type": "code", "execution_count": 11, "id": "7db32559", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.694197Z", "iopub.status.busy": "2023-02-14T17:32:35.693748Z", "iopub.status.idle": "2023-02-14T17:32:35.704969Z", "shell.execute_reply": "2023-02-14T17:32:35.703536Z" }, "papermill": { "duration": 0.023295, "end_time": "2023-02-14T17:32:35.707839", "exception": false, "start_time": "2023-02-14T17:32:35.684544", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "array(['Music', 'Film & animation', 'Education', 'Shows', 'Entertainment',\n", " 'Other', 'Gaming', 'People & blogs', 'Sports', 'Howto & style',\n", " 'News & politics', 'Comedy', 'Trailers', 'Nonprofits & activism',\n", " 'Science & technology', 'Movies', 'Pets & animals',\n", " 'Autos & vehicles', 'Travel & events'], dtype=object)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Category'] = df['Category'].str.capitalize()\n", "df['Category'].unique()" ] }, { "cell_type": "code", "execution_count": 12, "id": "b577441d", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.724334Z", "iopub.status.busy": "2023-02-14T17:32:35.723930Z", "iopub.status.idle": "2023-02-14T17:32:35.738227Z", "shell.execute_reply": "2023-02-14T17:32:35.737228Z" }, "papermill": { "duration": 0.025655, "end_time": "2023-02-14T17:32:35.740967", "exception": false, "start_time": "2023-02-14T17:32:35.715312", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 1000 entries, 0 to 999\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Rank 1000 non-null int64 \n", " 1 Youtube Channel 1000 non-null object\n", " 2 Subscribers 1000 non-null int64 \n", " 3 Video Views 1000 non-null int64 \n", " 4 Video Count 1000 non-null int64 \n", " 5 Category 1000 non-null object\n", " 6 Started 1000 non-null int64 \n", "dtypes: int64(5), object(2)\n", "memory usage: 54.8+ KB\n" ] } ], "source": [ "df.info()" ] }, { "cell_type": "code", "execution_count": 13, "id": "bfd4bf3e", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.758763Z", "iopub.status.busy": "2023-02-14T17:32:35.758312Z", "iopub.status.idle": "2023-02-14T17:32:35.768161Z", "shell.execute_reply": "2023-02-14T17:32:35.767205Z" }, "papermill": { "duration": 0.020994, "end_time": "2023-02-14T17:32:35.770364", "exception": false, "start_time": "2023-02-14T17:32:35.749370", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Rank 0\n", "Youtube Channel 0\n", "Subscribers 0\n", "Video Views 0\n", "Video Count 0\n", "Category 0\n", "Started 0\n", "dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Check null values\n", "\n", "df.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 14, "id": "3d5f2610", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.788310Z", "iopub.status.busy": "2023-02-14T17:32:35.787191Z", "iopub.status.idle": "2023-02-14T17:32:35.817267Z", "shell.execute_reply": "2023-02-14T17:32:35.816001Z" }, "papermill": { "duration": 0.041896, "end_time": "2023-02-14T17:32:35.819904", "exception": false, "start_time": "2023-02-14T17:32:35.778008", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Rank</th>\n", " <th>Subscribers</th>\n", " <th>Video Views</th>\n", " <th>Video Count</th>\n", " <th>Started</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>1000.000000</td>\n", " <td>1.000000e+03</td>\n", " <td>1.000000e+03</td>\n", " <td>1000.000000</td>\n", " <td>1000.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>500.500000</td>\n", " <td>2.158140e+07</td>\n", " <td>9.994912e+09</td>\n", " <td>9416.228000</td>\n", " <td>2012.594000</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>288.819436</td>\n", " <td>1.662556e+07</td>\n", " <td>1.300546e+10</td>\n", " <td>32190.909114</td>\n", " <td>4.110238</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>1.000000</td>\n", " <td>1.140000e+07</td>\n", " <td>0.000000e+00</td>\n", " <td>0.000000</td>\n", " <td>1970.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>250.750000</td>\n", " <td>1.340000e+07</td>\n", " <td>3.871470e+09</td>\n", " <td>365.500000</td>\n", " <td>2010.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>500.500000</td>\n", " <td>1.660000e+07</td>\n", " <td>6.723360e+09</td>\n", " <td>896.000000</td>\n", " <td>2013.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>750.250000</td>\n", " <td>2.320000e+07</td>\n", " <td>1.223052e+10</td>\n", " <td>3277.250000</td>\n", " <td>2015.000000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>1000.000000</td>\n", " <td>2.340000e+08</td>\n", " <td>2.129003e+11</td>\n", " <td>342802.000000</td>\n", " <td>2021.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Rank Subscribers Video Views Video Count Started\n", "count 1000.000000 1.000000e+03 1.000000e+03 1000.000000 1000.000000\n", "mean 500.500000 2.158140e+07 9.994912e+09 9416.228000 2012.594000\n", "std 288.819436 1.662556e+07 1.300546e+10 32190.909114 4.110238\n", "min 1.000000 1.140000e+07 0.000000e+00 0.000000 1970.000000\n", "25% 250.750000 1.340000e+07 3.871470e+09 365.500000 2010.000000\n", "50% 500.500000 1.660000e+07 6.723360e+09 896.000000 2013.000000\n", "75% 750.250000 2.320000e+07 1.223052e+10 3277.250000 2015.000000\n", "max 1000.000000 2.340000e+08 2.129003e+11 342802.000000 2021.000000" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 15, "id": "96ff28ca", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.837469Z", "iopub.status.busy": "2023-02-14T17:32:35.836988Z", "iopub.status.idle": "2023-02-14T17:32:35.847165Z", "shell.execute_reply": "2023-02-14T17:32:35.845969Z" }, "papermill": { "duration": 0.022141, "end_time": "2023-02-14T17:32:35.849983", "exception": false, "start_time": "2023-02-14T17:32:35.827842", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Entertainment 238\n", "Music 217\n", "People & blogs 132\n", "Gaming 94\n", "Comedy 68\n", "Film & animation 50\n", "Education 45\n", "Howto & style 43\n", "Other 30\n", "News & politics 27\n", "Science & technology 18\n", "Shows 14\n", "Sports 10\n", "Pets & animals 6\n", "Trailers 2\n", "Nonprofits & activism 2\n", "Movies 2\n", "Autos & vehicles 1\n", "Travel & events 1\n", "Name: Category, dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Category'].value_counts()" ] }, { "cell_type": "code", "execution_count": 16, "id": "68813bb8", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.868740Z", "iopub.status.busy": "2023-02-14T17:32:35.868022Z", "iopub.status.idle": "2023-02-14T17:32:35.878167Z", "shell.execute_reply": "2023-02-14T17:32:35.876866Z" }, "papermill": { "duration": 0.022819, "end_time": "2023-02-14T17:32:35.881059", "exception": false, "start_time": "2023-02-14T17:32:35.858240", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "df.drop(df[df['Started'] == '1970'].index, axis = 0, inplace = True)\n", "\n" ] }, { "cell_type": "code", "execution_count": 17, "id": "26965c88", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.899799Z", "iopub.status.busy": "2023-02-14T17:32:35.899338Z", "iopub.status.idle": "2023-02-14T17:32:35.909003Z", "shell.execute_reply": "2023-02-14T17:32:35.907660Z" }, "papermill": { "duration": 0.022465, "end_time": "2023-02-14T17:32:35.911609", "exception": false, "start_time": "2023-02-14T17:32:35.889144", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "2014 120\n", "2015 95\n", "2013 88\n", "2011 87\n", "2012 81\n", "2016 76\n", "2006 69\n", "2017 62\n", "2009 59\n", "2018 50\n", "2008 45\n", "2007 45\n", "2010 45\n", "2019 30\n", "2005 21\n", "2020 15\n", "2021 11\n", "1970 1\n", "Name: Started, dtype: int64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Started'].value_counts()" ] }, { "cell_type": "markdown", "id": "d0c15595", "metadata": { "papermill": { "duration": 0.007701, "end_time": "2023-02-14T17:32:35.927739", "exception": false, "start_time": "2023-02-14T17:32:35.920038", "status": "completed" }, "tags": [] }, "source": [ "# Data Visualization " ] }, { "cell_type": "markdown", "id": "ae228e86", "metadata": { "papermill": { "duration": 0.008133, "end_time": "2023-02-14T17:32:35.944400", "exception": false, "start_time": "2023-02-14T17:32:35.936267", "status": "completed" }, "tags": [] }, "source": [ "# Number of Channels started over the years" ] }, { "cell_type": "code", "execution_count": 18, "id": "a62b8564", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:35.963669Z", "iopub.status.busy": "2023-02-14T17:32:35.963234Z", "iopub.status.idle": "2023-02-14T17:32:37.333945Z", "shell.execute_reply": "2023-02-14T17:32:37.332898Z" }, "papermill": { "duration": 1.383809, "end_time": "2023-02-14T17:32:37.336605", "exception": false, "start_time": "2023-02-14T17:32:35.952796", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ " <script type=\"text/javascript\">\n", " window.PlotlyConfig = {MathJaxConfig: 'local'};\n", " if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n", " if (typeof require !== 'undefined') {\n", " require.undef(\"plotly\");\n", " requirejs.config({\n", " paths: {\n", " 'plotly': ['https://cdn.plot.ly/plotly-2.18.0.min']\n", " }\n", " });\n", " require(['plotly'], function(Plotly) {\n", " window._Plotly = Plotly;\n", " });\n", " }\n", " </script>\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div> <div id=\"a74fb727-c3f7-4ea3-bf5d-f68a0ea62122\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"a74fb727-c3f7-4ea3-bf5d-f68a0ea62122\")) { Plotly.newPlot( \"a74fb727-c3f7-4ea3-bf5d-f68a0ea62122\", [{\"alignmentgroup\":\"True\",\"hovertemplate\":\"Started=%{x}<br>Youtube Channel=%{y}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\",\"pattern\":{\"shape\":\"\"}},\"name\":\"\",\"offsetgroup\":\"\",\"orientation\":\"v\",\"showlegend\":false,\"textposition\":\"auto\",\"x\":[1970,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021],\"xaxis\":\"x\",\"y\":[1,21,69,45,45,59,45,87,81,88,120,95,76,62,50,30,15,11],\"yaxis\":\"y\",\"type\":\"bar\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Started\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"Youtube Channel\"}},\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60},\"barmode\":\"relative\"}, {\"responsive\": true} ).then(function(){\n", " \n", "var gd = document.getElementById('a74fb727-c3f7-4ea3-bf5d-f68a0ea62122');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", " console.log([gd, 'removed!']);\n", " Plotly.purge(gd);\n", " observer.disconnect();\n", " }}\n", "}});\n", "\n", "// Listen for the removal of the full notebook cells\n", "var notebookContainer = gd.closest('#notebook-container');\n", "if (notebookContainer) {{\n", " x.observe(notebookContainer, {childList: true});\n", "}}\n", "\n", "// Listen for the clearing of the current output cell\n", "var outputEl = gd.closest('.output');\n", "if (outputEl) {{\n", " x.observe(outputEl, {childList: true});\n", "}}\n", "\n", " }) }; }); </script> </div>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Need to group data as per the year when the channel started\n", "\n", "var1 = df.groupby(['Started'])['Youtube Channel'].count()\n", "var1 = var1.reset_index()\n", "\n", "px.bar(var1, x = 'Started', y = 'Youtube Channel')\n" ] }, { "cell_type": "markdown", "id": "e151186e", "metadata": { "papermill": { "duration": 0.008164, "end_time": "2023-02-14T17:32:37.353553", "exception": false, "start_time": "2023-02-14T17:32:37.345389", "status": "completed" }, "tags": [] }, "source": [ "# Distribution of Subscribers among Categories" ] }, { "cell_type": "code", "execution_count": 19, "id": "21180154", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:37.372663Z", "iopub.status.busy": "2023-02-14T17:32:37.371941Z", "iopub.status.idle": "2023-02-14T17:32:37.444997Z", "shell.execute_reply": "2023-02-14T17:32:37.443933Z" }, "papermill": { "duration": 0.085748, "end_time": "2023-02-14T17:32:37.447752", "exception": false, "start_time": "2023-02-14T17:32:37.362004", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div> <div id=\"ea9ebbb6-d78f-4df5-9d5d-63758d230674\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"ea9ebbb6-d78f-4df5-9d5d-63758d230674\")) { Plotly.newPlot( \"ea9ebbb6-d78f-4df5-9d5d-63758d230674\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"Category=%{label}<br>Subscribers=%{value}<extra></extra>\",\"labels\":[\"Autos & vehicles\",\"Comedy\",\"Education\",\"Entertainment\",\"Film & animation\",\"Gaming\",\"Howto & style\",\"Movies\",\"Music\",\"News & politics\",\"Nonprofits & activism\",\"Other\",\"People & blogs\",\"Pets & animals\",\"Science & technology\",\"Shows\",\"Sports\",\"Trailers\",\"Travel & events\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[18900000,1256400000,1133600000,4768200000,1275200000,1873900000,782300000,48000000,5224800000,519300000,51700000,793400000,2558500000,87900000,312000000,516700000,273600000,74700000,12300000],\"type\":\"pie\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60}}, {\"responsive\": true} ).then(function(){\n", " \n", "var gd = document.getElementById('ea9ebbb6-d78f-4df5-9d5d-63758d230674');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", " console.log([gd, 'removed!']);\n", " Plotly.purge(gd);\n", " observer.disconnect();\n", " }}\n", "}});\n", "\n", "// Listen for the removal of the full notebook cells\n", "var notebookContainer = gd.closest('#notebook-container');\n", "if (notebookContainer) {{\n", " x.observe(notebookContainer, {childList: true});\n", "}}\n", "\n", "// Listen for the clearing of the current output cell\n", "var outputEl = gd.closest('.output');\n", "if (outputEl) {{\n", " x.observe(outputEl, {childList: true});\n", "}}\n", "\n", " }) }; }); </script> </div>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var2 = df.groupby(['Category'])['Subscribers'].sum()\n", "var2 = var2.reset_index()\n", "px.pie(var2, values = 'Subscribers',names = 'Category' )\n" ] }, { "cell_type": "code", "execution_count": 20, "id": "dab29362", "metadata": { "execution": { "iopub.execute_input": "2023-02-14T17:32:37.467956Z", "iopub.status.busy": "2023-02-14T17:32:37.467526Z", "iopub.status.idle": "2023-02-14T17:32:37.524922Z", "shell.execute_reply": "2023-02-14T17:32:37.523467Z" }, "papermill": { "duration": 0.070716, "end_time": "2023-02-14T17:32:37.527650", "exception": false, "start_time": "2023-02-14T17:32:37.456934", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div> <div id=\"d868b2f7-a263-4c10-9425-8ecba2cf4b94\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d868b2f7-a263-4c10-9425-8ecba2cf4b94\")) { Plotly.newPlot( \"d868b2f7-a263-4c10-9425-8ecba2cf4b94\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"Category=%{label}<br>Youtube Channel=%{value}<extra></extra>\",\"labels\":[\"Autos & vehicles\",\"Comedy\",\"Education\",\"Entertainment\",\"Film & animation\",\"Gaming\",\"Howto & style\",\"Movies\",\"Music\",\"News & politics\",\"Nonprofits & activism\",\"Other\",\"People & blogs\",\"Pets & animals\",\"Science & technology\",\"Shows\",\"Sports\",\"Trailers\",\"Travel & events\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[\"DUDU e CAROL\",\"whinderssonnunesLuisito ComunicaCarryMinatiJkk EntertainmentKHANDESHI MOVIESThe Tonight Show Starring Jimmy FallonAuronPlayTalking TomRound2hellashish chanchlani vinesenchufetvEnaldinhoSmoshBrent RiveraLankyBoxCanal CanalhaAlejo IgoaNoor StarsJennaMarblesDaniel LaBelleTheOdd1sOutShorts BreakTheWillyrexBizarrapYOLOLele PonsAlan Chikin ChowTriggered InsaanLiza KoshyTheBrianMapsMissaSinfoniaPrajapati NewsSpider SlackAayu and Pihu ShowFailArmyKaykai SalaiderT3ddyHarsh BeniwalMarta and RustamCollegeHumorLilly SinghChad Wild ClayRclbeauty101CyprienThe MriDuldednahypeFAPTVRebecca ZamoloO Que Não Dizer OficialThe LaBrant FamEverson ZoioMy Mate NateMelon City Show - برنامج ولاية بطيخJust For Laughs GagsHeroindoriCHHOTU KI MASTISEVENGERSFranco EscamillaTopper GuildRubius ZDANIEL EL TRAVIESO VIDEOSMake Joke OfNormanEU FICO LOKOSBTDani Russo TvNoman OfficialGustavo Paródias\",\"Cocomelon - Nursery RhymesPinkfong Baby Shark - Kids' Songs & StoriesChuChu TV Nursery Rhymes & Kids SongsBillionSurpriseToys - English Kids Songs & CartoonInfobells - HindiLittle Baby Bum - Nursery Rhymes & Kids SongsSuper Simple Songs - Kids SongsCVS 3D Rhymes & Kids SongsBabyBus - Kids Songs and CartoonsGenevieve's Playhouse - Learning Videos for KidsLittle Angel: Nursery Rhymes & Kids Songsinfobells - Tamilinfobells - TeluguBabyBus - Canciones Infantiles & Videos para NiñosDr. Vivek Bindra: Motivational SpeakerKurzgesagt – In a NutshellKhan GS Research CentreBabyBus - Cerita & Lagu Anak-anakहिंदी - Genevieve's PlayhouseKiddiestv Hindi - Nursery Rhymes & Kids SongsМирошка ТВLittle Angel Español - Canciones InfantilesTED-EdBlippi - Educational Videos for KidsJason VlogsEl Reino a JugarwifistudyTheRichestDave and Ava - Nursery Rhymes and Baby SongsDaftar PopulerDear SirCrashCourseInfobells BanglaStudyIQ IASinfobellsNetflix Jr.VeritasiumJOJO TV - Hindi StoriesThe Shiny PeanutThe Infographics ShowTKORLittle Baby Bum en Españolinfobells - KannadaKoo Koo TV - HindiYtCrash\",\"MrBeastVlad and NikiZee TVMarshmelloBadabunFelipe NetoGet MoviesVocê Sabia?ShemarooHolaSoyGerman.Voot KidsLike Nastya ShowRihannaARY Digital HDToys and ColorsTheEllenShowWorkpointOfficialHAR PAL GEOช่อง one31Like Nastya ESPRyan's WorldCh3ThailandEros Now MusicSaregama MusicLuis FonsiAHBoram Tube Vlog [보람튜브 브이로그]DONA 도나GMANetworkقناة طيور الجنة | toyoraljanahtvLucas and MarcusTheDonatoThe Late Late Show with James CordenA.O.DRenato Garcia YTJess No LimitBB Ki Vines1MILLION Dance StudioNetflixShemaroo MoviesCrazy XYZStarPlusHUM TVTRANS7 OFFICIALAmit BhadanaCollins KeyKSIJames CharlesLogan PaulLike Nastya AEMrBeast en EspañolAmerica's Got TalentSesame StreetVenus MoviesDrossRotzankZhongWhite Hill MusicJuan De Dios PantojaLike Nastya PRTMaya and MaryDushyant kukrejanigahigaDisney LatinoaméricaKinder Spielzeug KanalFamily GamesTVLyrical LemonadeJunya.じゅんやGMA Public AffairsEva Bravo PlaySlivkiShowMnet K-POPMarvel EntertainmentInfiniteREACTGot Talent GlobalFatos DesconhecidosDan RhodesDeddy CorbuzierNinja Kidz TVRobin Hood GamerGordon RamsayRafa & LuizTRT Originals UrduCookieSwirlCBritain's Got TalentJimmy Kimmel LiveSCTVSonotekElTrollinoVijay TelevisionKBS WORLD TVetvteluguindiaCKNПознавательPDK FilmsGEN HALILINTARGood Mythical MorningRKD StudiosRobleisIUTUSidemenPorta dos FundosFactTechzDangal TV ChannelShemaroo ComedyAkshay NagwadiyaGaby and AlexEeOneGuyDoggy Doggy CartoonsAzhan5starTRANS TV OfficialAnd TVMiley CyrusDeToxoMoroxoLike Nastya VNMWerever2morroTsuriki ShowAMARINTV : อมรินทร์ทีวีVICEPANDA BOISagawa /さがわKids PlayWith Kids[위드키즈]FunFun Toy Doll TVMatt StonieLike Nastya IDNRCTI - LAYAR DRAMA INDONESIAAdMeSriBalajiMoviesCh7HDDyland PROSCaeli YTGMMTV OFFICIAL​​LEGOДима МасленниковLa Rosa de GuadalupeSuper SenyaZach KingOyuncak AvıBollywood ClassicsTalking Tom & FriendsTaarak Mehta Ka Ooltah ChashmahAjay SharmaNiana GuerreroERBiTownGamePlay *Terror&Diversión*Reaction TimeThe Slow Mo Guysحقائق وأسرارXpressTVCanal Nostalgiales boys tv2Maha Fun TvO Canal do Joãozinho - Little Angel PortuguêsYoeslanDrawblogsDaily Dose Of InternetJake FellmanA2 Motivation by Arvind Aroraช่อง8 : Thai Ch8Jordan Matterانصالة فاميلي I أنس و أصالةMazhavil ManoramaSIS vs BRODoc TopsDisney JuniorMNCTV OFFICIAL#Refugio MentalМастерская НастроенияLike Nastya StoriesTelemundoBie The SkaJuliana BaltarGMM25ThailandDangMattSmithT-Series Hamaar BhojpuriZEE5Ray William JohnsonADEL et SAMIMAIKI021Sony LIVCrescendo com LulucaT-Series RegionalSaturday Night LiveKurt Hugo SchneiderZee TelugukarameeshchannelVexTrexMatt SteffaninaCome Play With MeLady DianaMatheus YurleyMythpatCalon SarjanaZee BanglaRedeTVEi NerdGoldmines PremiereTop Viral TalentColors RishteyRS 1313 SHORTS#Refúgio MentalBIBO와 장난감MrSuicideSheepAmi RodriguezBlockbuster MoviesSonotek BhaktiYudist ArdhanaJesseAndMikeDavie504VogueParafernalhaTalking AngelaSAAIHALILINTARHeidi and Zidane HZHtubePeople Vs FoodSR Toys CollectionNDTVIts JoJo SiwaMC DivertidaYoungBoy Never Broke AgainIce Cream RollscolinfurzeTHE BROWN SIBLINGSLulu99eltreceMBC مصرKluna Tikemma chamberlainKashvi AdlakhaFlowers ComedyWild 'N OutBIBO и ИгрушкиSalman NomanSingle Track StudioAirrackToys Make Me SmileBrancoalaToysPlay\",\"YouTube MoviesGoldminesMovieclipsYRFМаша и МедведьPowerKids TVGalinha PintadinhaSelena GomezJingle ToonsPeppa Pig - Official ChannelWow KidzNick Jr.Goldmines DishoomMasha y el OsoZHCGoldmines BollywoodErlania e Valentina PontesPen MoviesGoldmines MoviesPeppa Pig Español Latino - Canal OficialGoldmines CineplexAlan BeckerTotoy kids - PortuguêsPencilmationTilakGreen Gold TV - Official ChannelOfficial Pink PantherTurma da MônicaGoldmines Great Indian ComedyStubborn FactsBen AzelartLes' Copaque ProductionWow Kidz ActionGato Galactico | GALÁXIAEl Payaso Plim PlimRotten Tomatoes TrailersMSA previously My Story AnimatedVolga VideoTotoy kids - EspañolInvento na HoraZig & SharkoDarkar Company StudiosPeppa Pig em Português Brasil - Canal OficialNat and EssieGoldminesActionJaiden AnimationsPOCOYÓ en ESPAÑOL - Canal OficialMachinimaZee KidsThe Film Theorists\",\"PewDiePieJuegaGermanFernanflooA4elrubiusOMGMikecrackTotal GamingMarkiplierVEGETTA777SSSniperWolfrezendeevilDreamTechno GamerzMrBeast GamingjacksepticeyeAboFlahDanTDMVanossGamingNinjaFrost DiamondJellyFaZe RugPrestonSSundeeFGTeeVLazarBeaminvictorAuthenticGamesClash of ClansAS GamingMiawAugAli-AMarmokTheGrefgSQUEEZIEشبكة العاب العرب | Arab Games NetworkPopularMMOsIGNWillyrexzbing z.Guava JuiceThe Game TheoristsW2SJJ OlatunjiAntraxEnes BaturTechnobladeCoryxKenshinLOKESH GAMERAphmauIShowSpeedMakiman131League of LegendsUnspeakableLynaMobile Legends: Bang Bang OfficialKwebbelkopLachlanPlayStationKuplinov ► PlayEdisonPtsGyan GamingㅤPrestonPlayzAM3NlCTazerCraftNOBRUFFUNTVPlayHardAzzyLandDesi GamersH2ODelirioustheRadBradJazzghostBrawl StarsTypical Gamerأترو/AtroКомпотDeGoBooME-MasterSenseiBanderitaXPiuzinhoLOUDAcenixDaniRep | +6 Vídeos Diarios De GTA 5 Online!Timba VkYair17penguinz0LipaoGamerTommyInnitFrontaL GamingTfueCarryisLiveFlamingoMorgz\",\"5-Minute CraftsBRIGHT SIDEGENIALYuyaChloe TingTroom TroomTasty5-Minute Crafts DIY5-Minute Crafts PLAYGulshan KalraVillage Cooking ChannelSUPER SLICK SLIME SAMFede VigevaniManual do Mundo李子柒 LiziqiHowToBasicIDEAS EN 5 MINUTOSSandra Cires Artjeffreestarحِرف إبداعية في 5 دقائقMusasMarialeIDEIAS INCRÍVEISТрум ТрумRosanna PansinoNikkieTutorialsMis PastelitosNarins BeautyWengieAnaysaNishaMadhulikaATHLEAN-X™Kabita's KitchenTroom Troom IndiaBlossomHealth TimeTroom Troom PTTsMadaanFirst We Feastbharatzkitchen HINDIالجانب المُشرق | Bright Side ArabicYoga With AdrieneVy Qwaint\",\"Aditya MoviesUltra Movie Parlour\",\"T-SeriesZee Music CompanyBANGTANTVJustin BieberHYBE LABELSCanal KondZillaShemaroo Filmi GaaneT-Series Bhakti SagarTips OfficialWave MusicSony Music IndiaEminemMusicEl Reino InfantilEd SheeranLooLoo Kids - Nursery Rhymes and Children's SongsAriana GrandeTaylor SwiftBillie EilishBad BunnySonyMusicIndiaVEVOKaty PerryAlan WalkerSpeed RecordsXXXTENTACIONGR6 EXPLODEOne DirectionDaddy YankeeMaroon 5Goldmines Gaane Sune AnsuneBruno MarsOzunaJ BalvinGeet MP3Desi Music FactoryT-Series Apna PunjabLa Granja de ZenónNoCopyrightSoundsBollywood ClassicsRajshriJustinBieberVEVOSMTOWNDisneyMusicVEVOThe WeekndTrap NationWorldwide Records BhojpuriSpinnin' RecordsImagineDragonsShawn MendesAdeleUltra RecordsMalumaKAROL GDrakeAditya MusicBounce Patrol - Kids SongsMichael JacksonWiz KhalifatoycantandoJYP EntertainmentWORLDSTARHIPHOPTaylorSwiftVEVOBeyoncéMarília MendonçaRihannaVEVONicki MinajDavid GuettaWatchMojo.comEminemVEVOPost MaloneKatyPerryVEVOChris BrownColdplay1theK (원더케이)DJ SnakeAnuel AAnetd müzikEnrique IglesiasNickyJamTVIndosiarGMM GRAMMY OFFICIALThe ChainsmokersWave Music BhojpuriPaulo LondraSiaOneDirectionVEVOCharlie PuthDua LipatoyorbabytvRotanaBecky GAviciiRomeo SantosSkrillexPentatonixVevoLinkin ParkGusttavo Lima OficialLil Nas XSidhu Moose WalaCalvin HarrisEmiway BantaishakiraVEVOFarrukoDan-Sa / Daniel Saboya7cloudsRsiamMusic : อาร์สยามGRAMMY GOLD OFFICIALDemi LovatoArianaGrandeVevoofficialpsyLil Pumpunknown boy varunJFlaMusicSonyMusicSouthVEVOالـريماس - Al-RemasJason DeruloLuisFonsiVEVOAnittaQueen OfficialTravis ScottPop ChartbustersLittle MixBoyce AvenuePitbullCamila CabelloJennifer LopezDopeLyricsSAM SMITHLahari Music | T-SeriesFitDancePOPS KidsCamiloMK MUSICHenrique e JulianoTWICEzaynAdeleVEVOTeam Films BhojpuriBIGBANGZee Music ClassicGenierockZé Neto e CristianoFueled By RamenMajor Lazer OfficialJorge & Mateus OficialMattyBRapsLEGENDA FUNKFifth HarmonyMartin GarrixMaroon5VEVOSelenaGomezVEVOHear This MusicKim LoaizaDM - Desi Melodies50 CentSRK MUSICCamila LouresSaad Lamjarred | سعد لمجردMalumaVEVOAadishakti FilmsKatakit Baby TVTrap Citymelanie martinezO Reino InfantilNeha KakkarSony Music SouthWish 107.5Coke StudioGallina PintaditaWesley SafadãoCrazy FrogAtlantic RecordsLindsey StirlingConor MaynardjbalvinVEVOThink Music Indiatwenty one pilotsDJ KhaledEnriqueIglesiasVEVOLana Del ReyAwakening MusicHungria Hip HopBeyoncéVEVO7 MinutozCodiscosLuli PampínLokdhun PunjabiNickiMinajAtVEVOAdexe & NauelliegouldingJass RecordsDisneyChannelUKRauw AlejandroFutureDuo Tiempo De SolMigos ATLAkonWave Music BhaktiAvril LavigneNATTI NATASHAMor HaryanviBlack Eyed PeasCNCOLuan SantanaLofi GirlChrisBrownVEVOMORGENSHTERNCalvinHarrisVEVOP!NKTWO SIDE GAMERSHalseyLil WayneelcarteldesantatvMundo BitaBiper y sus AmigosStar Casablanca | نجوم الدار البيضاءNirahua Music World\",\"Aaj TakYouTubeIndiaTVZee NewsRaffy Tulfo in ActionThe LallantopTlnovelasDLS NewsSOMOY TVSebastián YatraNews24NMF NewsBBC News HindiNews18 IndiaThairath OnlineNDTV IndiaCNNABS-CBN NewsKOMPASTVABC NewsBBC NewsNarendra ModiJamuna TVGeo NewsGMA NewsRepublic BharatARY News\",\"TEDx TalksBispo Bruno Leonardo\",\"MusicGamingSportsNewsVlad và NikiPopular on YouTubeव्लाद और निकिताSuper JoJo - Nursery Rhymes & Kids SongsD BillionsDiana and Roma ARAVlad and Niki ArabicBETER BÖCÜKMinecraft - TopicVlad and Niki IDNVlad and Niki ESPSmile Family SpanishJane ASMR 제인Busy Fun LtdIvana AlawiLiveVlad and Niki ARAWolfoo ChannelВлад и НикитаWiederDudeWolfoo FamilyEli Kids - Cartoons & SongsHeidi y ZidanePandaDiana and Roma INDKaKa Kids TV - Nursery Rhymes Kids Animated Songs\",\"✿ Kids Diana ShowLike NastyaBLACKPINKABS-CBN EntertainmentShakiraKimberly LoaizaLUCCAS NETO - LUCCAS TOONshfa2 - شفاshfaMaria Clara & JPABP NEWSRicis OfficialSandeep MaheshwariLosPolinesiosLas RatitasRans Entertainment★ Kids Roma ShowABPLIVEWB KidsMister MaxMiss KatyYOLO AVENTURASLady GagaSmile FamilyTEDmmoshayaDiana and Roma ENBeast ReactsNichLmaoBaim PaulaSun TVNetflix IndiaTekashi 6ix9ineVania Mania KidsJake PaulBuzzFeedVideomujjuu___14The Royalty FamilyTroom Troom EsshaneJukiLopSourav Joshi VlogsCrafty PandaCardi BHiManStokes TwinsThe ACE FamilyMrBeast 2INCRÍVELNaisa Alifia Yuriza (N.A.Y)Like Nastya VlogDavid DobrikZach Choi ASMRLIV CrimeDhar MannZuni and FamilyKatie Angeltanboy kunSMOLTu COSMOPOLISExtraPolinesiosCanal INRoman Atwood VlogsKerajinan 5-Menit5-Minute Crafts FAMILYRanz KyleArif muhammadНТВIt's MamixBlippi EspañolPlaneta das GêmeasLeoNata FamilyBoram Tube ToysReview [보람튜브 토이리뷰]Hongyu ASMR 홍유Super PolinaMohamed Ramadan I محمد رمضانГЛЕНТAuron5-Minute Crafts RecycleHarry StylesPowerfulJREIshaan Ali 11tuzelity SHUFFLETV Ana EmiliaDanny Fitt123 GO! SpanishMyMissAnandETV JabardasthThe World Adventures हिन्दीJD PantojaПоззиThe QMeghan TrainorAlex Gonzaga Officialsagar kalra (Shorts)CookingShooking HindiKnowledge Tv हिन्दीTV9 BharatvarshIndore Physical AcademyRaptorGamerKids Line♡キッズラインЛуномосикJa MillPriyal KukrejaCaseyNeistatKoray ZeynepGibby :)办公室小野 Ms Yeah웃웃TwinsFromRussiaTroom Troom Indonesiajaanvi patelKylie JennerBela Bagunçadeepesh zo123 GO!Planet Earth INDIAPastor Antônio JúniorHero Movies 2023Willie SalimPari's LifestyleAlArabiya العربيةNaz | نازKendrick LamarGarena Free Fire LATAMChetan Monga VlogsFree Fire India OfficialStray KidsZutiGang설기양SULGIXO TEAMPainzeiroOum Walid\",\"Brave WildernessThat Little PuffBBCThe DodoBBC EarthMaymo\",\"MR. INDIAN HACKERHappy LivesMark RoberTechnical GurujiNational GeographicHaerteTestVsauceUnbox TherapyAppleMarques BrownleeLinus Tech TipsHacksmith IndustriesMrwhosethebossTrakin TechTechnology GyanQuantum Tech HDMrGearCrazyRussianHacker\",\"SET IndiaSony SABColors TVMasha and The BearSony PALMr BeanKids TV - Nursery Rhymes And Baby SongsSony AATHMasha e o UrsoMother Goose Club Playhouseماشا و الدبKids TV India Hindi Nursery RhymesМаша та ВедмідьAnnoying Orange\",\"WWEDude PerfectNBAFIFAUFC - Ultimate Fighting ChampionshipHow RidiculousFC BarcelonaF2Freestylers - Ultimate Soccer Skills ChannelDALLMYDgymvirtual\",\"Ishtar MusicUltra Bollywood\",\"Más SKabeche\"],\"type\":\"pie\"}], {\"template\":{\"data\":{\"histogram2dcontour\":[{\"type\":\"histogram2dcontour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"choropleth\":[{\"type\":\"choropleth\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"histogram2d\":[{\"type\":\"histogram2d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmap\":[{\"type\":\"heatmap\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"heatmapgl\":[{\"type\":\"heatmapgl\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"contourcarpet\":[{\"type\":\"contourcarpet\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"contour\":[{\"type\":\"contour\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"surface\":[{\"type\":\"surface\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]}],\"mesh3d\":[{\"type\":\"mesh3d\",\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"parcoords\":[{\"type\":\"parcoords\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolargl\":[{\"type\":\"scatterpolargl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"scattergeo\":[{\"type\":\"scattergeo\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterpolar\":[{\"type\":\"scatterpolar\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"scattergl\":[{\"type\":\"scattergl\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatter3d\":[{\"type\":\"scatter3d\",\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattermapbox\":[{\"type\":\"scattermapbox\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scatterternary\":[{\"type\":\"scatterternary\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"scattercarpet\":[{\"type\":\"scattercarpet\",\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}}}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}]},\"layout\":{\"autotypenumbers\":\"strict\",\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"hovermode\":\"closest\",\"hoverlabel\":{\"align\":\"left\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"bgcolor\":\"#E5ECF6\",\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"ternary\":{\"bgcolor\":\"#E5ECF6\",\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]]},\"xaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"yaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"automargin\":true,\"zerolinewidth\":2},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\",\"gridwidth\":2}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"geo\":{\"bgcolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"subunitcolor\":\"white\",\"showland\":true,\"showlakes\":true,\"lakecolor\":\"white\"},\"title\":{\"x\":0.05},\"mapbox\":{\"style\":\"light\"}}},\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60}}, {\"responsive\": true} ).then(function(){\n", " \n", "var gd = document.getElementById('d868b2f7-a263-4c10-9425-8ecba2cf4b94');\n", "var x = new MutationObserver(function (mutations, observer) {{\n", " var display = window.getComputedStyle(gd).display;\n", " if (!display || display === 'none') {{\n", " console.log([gd, 'removed!']);\n", " Plotly.purge(gd);\n", " observer.disconnect();\n", " }}\n", "}});\n", "\n", "// Listen for the removal of the full notebook cells\n", "var notebookContainer = gd.closest('#notebook-container');\n", "if (notebookContainer) {{\n", " x.observe(notebookContainer, {childList: true});\n", "}}\n", "\n", "// Listen for the clearing of the current output cell\n", "var outputEl = gd.closest('.output');\n", "if (outputEl) {{\n", " x.observe(outputEl, {childList: true});\n", "}}\n", "\n", " }) }; }); </script> </div>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "var3 = df.groupby(['Category'])['Youtube Channel'].sum()\n", "var3 = var3.reset_index()\n", "px.pie(var3, values = 'Youtube Channel',names = 'Category' )\n" ] }, { "cell_type": "markdown", "id": "e0d19bf3", "metadata": { "papermill": { "duration": 0.009488, "end_time": "2023-02-14T17:32:37.546883", "exception": false, "start_time": "2023-02-14T17:32:37.537395", "status": "completed" }, "tags": [] }, "source": [ "# Insights \n", "\n", "* Among the top 1000 Youtube channels 120 were started in the year of 2014, which was maximum for any given year in the given dataset.\n", "* " ] }, { "cell_type": "code", "execution_count": null, "id": "07c060ee", "metadata": { "papermill": { "duration": 0.009696, "end_time": "2023-02-14T17:32:37.566041", "exception": false, "start_time": "2023-02-14T17:32:37.556345", "status": "completed" }, "tags": [] }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "papermill": { "default_parameters": {}, "duration": 16.147601, "end_time": "2023-02-14T17:32:38.501405", "environment_variables": {}, "exception": null, "input_path": "__notebook__.ipynb", "output_path": "__notebook__.ipynb", "parameters": {}, "start_time": "2023-02-14T17:32:22.353804", "version": "2.3.4" } }, "nbformat": 4, "nbformat_minor": 5 }
0119/172/119172181.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED)
0119/172/119172326.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED)
0119/172/119172381.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"cee144b2\",\n \"metadata\": (...TRUNCATED)
0119/172/119172394.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"bb31a02f\",\n \"metadata\": (...TRUNCATED)
0119/173/119173070.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"40bd45(...TRUNCATED)
0119/173/119173092.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"cb4865ea\",\n \"metadata\": (...TRUNCATED)
0119/173/119173135.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"65a3ae(...TRUNCATED)
0119/173/119173234.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"5e1cd075\",\n \"metadata\": (...TRUNCATED)
0119/173/119173251.ipynb
s3://data-agents/kaggle-outputs/sharded/004_00119.jsonl.gz
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
25