|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The SciTail dataset is an entailment dataset created from multiple-choice science exams and |
|
web sentences. Each question and the correct answer choice are converted into an assertive |
|
statement to form the hypothesis. We use information retrieval to obtain relevant text from |
|
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource |
|
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order |
|
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with |
|
entails label and 16,925 examples with neutral label. |
|
""" |
|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import entailment_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{ |
|
Khot_Sabharwal_Clark_2018, |
|
title={SciTaiL: A Textual Entailment Dataset from Science Question Answering}, |
|
volume={32}, |
|
url={https://ojs.aaai.org/index.php/AAAI/article/view/12022}, DOI={10.1609/aaai.v32i1.12022}, |
|
abstractNote={ <p> We present a new dataset and model for textual entailment, derived from treating multiple-choice question-answering as an entailment problem. SciTail is the first entailment set that is created solely from natural sentences that already exist independently ``in the wild’’ rather than sentences authored specifically for the entailment task. Different from existing entailment datasets, we create hypotheses from science questions and the corresponding answer candidates, and premises from relevant web sentences retrieved from a large corpus. These sentences are often linguistically challenging. This, combined with the high lexical similarity of premise and hypothesis for both entailed and non-entailed pairs, makes this new entailment task particularly difficult. The resulting challenge is evidenced by state-of-the-art textual entailment systems achieving mediocre performance on SciTail, especially in comparison to a simple majority class baseline. As a step forward, we demonstrate that one can improve accuracy on SciTail by 5% using a new neural model that exploits linguistic structure. </p> }, |
|
number={1}, |
|
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, |
|
author={Khot, Tushar and Sabharwal, Ashish and Clark, Peter}, |
|
year={2018}, |
|
month={Apr.} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "scitail" |
|
_DISPLAYNAME = "SciTail" |
|
|
|
_DESCRIPTION = """\ |
|
The SciTail dataset is an entailment dataset created from multiple-choice science exams and |
|
web sentences. Each question and the correct answer choice are converted into an assertive |
|
statement to form the hypothesis. We use information retrieval to obtain relevant text from |
|
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource |
|
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order |
|
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with |
|
entails label and 16,925 examples with neutral label. |
|
""" |
|
|
|
_HOMEPAGE = "https://allenai.org/data/scitail" |
|
|
|
_LICENSE = "APACHE_2p0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT] |
|
|
|
_SOURCE_VERSION = "1.1.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"} |
|
|
|
|
|
class SciTailDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="scitail_source", |
|
version=SOURCE_VERSION, |
|
description="SciTail source schema", |
|
schema="source", |
|
subset_id="scitail", |
|
), |
|
BigBioConfig( |
|
name="scitail_bigbio_te", |
|
version=BIGBIO_VERSION, |
|
description="SciTail BigBio schema", |
|
schema="bigbio_te", |
|
subset_id="scitail", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "scitail_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_te": |
|
features = entailment_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv" |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv" |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv" |
|
), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
|
|
data = pd.read_csv( |
|
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3 |
|
) |
|
data["id"] = data.index |
|
|
|
if self.config.schema == "source": |
|
for _, row in data.iterrows(): |
|
yield row["id"], row.to_dict() |
|
|
|
elif self.config.schema == "bigbio_te": |
|
|
|
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x]) |
|
for _, row in data.iterrows(): |
|
yield row["id"], row.to_dict() |
|
|