Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 2,184 Bytes
7f96b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import importlib.resources as pkg_resources
import json
from collections import defaultdict
from enum import Enum
from types import SimpleNamespace

from bigbio.utils import resources
from bigbio.utils.license import License
from bigbio.utils.schemas import (
    entailment_features,
    kb_features,
    pairs_features,
    qa_features,
    text2text_features,
    text_features,
)

BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")

# shamelessly compied from:
# https://github.com/huggingface/datasets/blob/master/src/datasets/utils/metadata.py
langs_json = pkg_resources.read_text(resources, "languages.json")
langs_dict = {k.replace("-", "_").upper(): v for k, v in json.loads(langs_json).items()}
Lang = Enum("Lang", langs_dict)


METADATA: dict = {
    "_LOCAL": bool,
    "_LANGUAGES": Lang,
    "_PUBMED": bool,
    "_LICENSE": License,
    "_DISPLAYNAME": str,
}


class Tasks(Enum):
    NAMED_ENTITY_RECOGNITION = "NER"
    NAMED_ENTITY_DISAMBIGUATION = "NED"
    EVENT_EXTRACTION = "EE"
    RELATION_EXTRACTION = "RE"
    COREFERENCE_RESOLUTION = "COREF"

    QUESTION_ANSWERING = "QA"

    TEXTUAL_ENTAILMENT = "TE"

    SEMANTIC_SIMILARITY = "STS"

    PARAPHRASING = "PARA"
    TRANSLATION = "TRANSL"
    SUMMARIZATION = "SUM"

    TEXT_CLASSIFICATION = "TXTCLASS"


TASK_TO_SCHEMA = {
    Tasks.NAMED_ENTITY_RECOGNITION: "KB",
    Tasks.NAMED_ENTITY_DISAMBIGUATION: "KB",
    Tasks.EVENT_EXTRACTION: "KB",
    Tasks.RELATION_EXTRACTION: "KB",
    Tasks.COREFERENCE_RESOLUTION: "KB",
    Tasks.QUESTION_ANSWERING: "QA",
    Tasks.TEXTUAL_ENTAILMENT: "TE",
    Tasks.SEMANTIC_SIMILARITY: "PAIRS",
    Tasks.PARAPHRASING: "T2T",
    Tasks.TRANSLATION: "T2T",
    Tasks.SUMMARIZATION: "T2T",
    Tasks.TEXT_CLASSIFICATION: "TEXT",
}

SCHEMA_TO_TASKS = defaultdict(set)
for task, schema in TASK_TO_SCHEMA.items():
    SCHEMA_TO_TASKS[schema].add(task)
SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)

VALID_TASKS = set(TASK_TO_SCHEMA.keys())
VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())

SCHEMA_TO_FEATURES = {
    "KB": kb_features,
    "QA": qa_features,
    "TE": entailment_features,
    "T2T": text2text_features,
    "TEXT": text_features,
    "PAIRS": pairs_features,
}