File size: 6,786 Bytes
8a85cab fdc8ec4 095ceb0 8a85cab fdc8ec4 8a85cab fdc8ec4 8a85cab ef1e503 8a85cab ef1e503 8a85cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
from dataclasses import dataclass
from enum import Enum
import os
import datasets
import pandas as pd
class Tasks(Enum):
NAMED_ENTITY_RECOGNITION = "NER"
NAMED_ENTITY_DISAMBIGUATION = "NED"
EVENT_EXTRACTION = "EE"
RELATION_EXTRACTION = "RE"
COREFERENCE_RESOLUTION = "COREF"
QUESTION_ANSWERING = "QA"
TEXTUAL_ENTAILMENT = "TE"
SEMANTIC_SIMILARITY = "STS"
PARAPHRASING = "PARA"
TRANSLATION = "TRANSL"
SUMMARIZATION = "SUM"
TEXT_CLASSIFICATION = "TXTCLASS"
@dataclass
class BigBioConfig(datasets.BuilderConfig):
"""BuilderConfig for BigBio."""
name: str = None
version: datasets.Version = None
description: str = None
schema: str = None
subset_id: str = None
_LANGUAGES = ["EN"]
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{scitail,
author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
booktitle = {AAAI}
title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
year = {2018}
}
"""
_DATASETNAME = "scitail"
_DISPLAYNAME = "SciTail"
_DESCRIPTION = """\
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
_HOMEPAGE = "https://allenai.org/data/scitail"
_LICENSE = "Apache 2.0"
_URLS = {
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
}
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SOURCE_VERSION = "1.1.0"
_BIGBIO_VERSION = "1.0.0"
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
entailment_features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
class SciTailDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="scitail_source",
version=SOURCE_VERSION,
description="SciTail source schema",
schema="source",
subset_id="scitail",
),
BigBioConfig(
name="scitail_bigbio_te",
version=BIGBIO_VERSION,
description="SciTail BigBio schema",
schema="bigbio_te",
subset_id="scitail",
),
]
DEFAULT_CONFIG_NAME = "scitail_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_te":
features = entailment_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
),
},
),
]
def _generate_examples(self, filepath):
# since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
# e.g.: ... and apply specific "tools" to examples and ...
data = pd.read_csv(
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
)
data["id"] = data.index
if self.config.schema == "source":
for _, row in data.iterrows():
yield row["id"], row.to_dict()
elif self.config.schema == "bigbio_te":
# normalize labels
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
for _, row in data.iterrows():
yield row["id"], row.to_dict()
|