gabrielaltay
commited on
Commit
•
9bae2e6
1
Parent(s):
ecf5b98
upload hubscripts/scai_chemical_hub.py to hub from bigbio repo
Browse files- scai_chemical.py +257 -0
scai_chemical.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
A dataset loader for the SCAI Chemical dataset.
|
18 |
+
|
19 |
+
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated
|
20 |
+
to give an overview of the different chemical name classes
|
21 |
+
found in MEDLINE text.
|
22 |
+
"""
|
23 |
+
|
24 |
+
import gzip
|
25 |
+
from typing import Dict, List, Tuple
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
from .bigbiohub import kb_features
|
30 |
+
from .bigbiohub import BigBioConfig
|
31 |
+
from .bigbiohub import Tasks
|
32 |
+
|
33 |
+
_LANGUAGES = ['English']
|
34 |
+
_PUBMED = True
|
35 |
+
_LOCAL = False
|
36 |
+
_CITATION = """\
|
37 |
+
@inproceedings{kolarik:lrec-ws08,
|
38 |
+
author = {Kol{\'a}{\vr}ik, Corinna and Klinger, Roman and Friedrich, Christoph M and Hofmann-Apitius, Martin and Fluck, Juliane},
|
39 |
+
title = {Chemical Names: {T}erminological Resources and Corpora Annotation},
|
40 |
+
booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining},
|
41 |
+
year = {2008},
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DATASETNAME = "scai_chemical"
|
46 |
+
_DISPLAYNAME = "SCAI Chemical"
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated
|
50 |
+
to give an overview of the different chemical name classes
|
51 |
+
found in MEDLINE text.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpora-for-chemical-entity-recognition.html"
|
55 |
+
|
56 |
+
_LICENSE = 'License information unavailable'
|
57 |
+
|
58 |
+
_URLS = {
|
59 |
+
_DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Corpora-for-Chemical-Entity-Recognition/chemicals-test-corpus-27-04-2009-v3_iob.gz",
|
60 |
+
}
|
61 |
+
|
62 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
63 |
+
|
64 |
+
_SOURCE_VERSION = "3.0.0"
|
65 |
+
|
66 |
+
_BIGBIO_VERSION = "1.0.0"
|
67 |
+
|
68 |
+
|
69 |
+
class ScaiChemicalDataset(datasets.GeneratorBasedBuilder):
|
70 |
+
"""SCAI Chemical is a dataset annotated in 2008 with mentions of chemicals."""
|
71 |
+
|
72 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
73 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
BigBioConfig(
|
77 |
+
name="scai_chemical_source",
|
78 |
+
version=SOURCE_VERSION,
|
79 |
+
description="SCAI Chemical source schema",
|
80 |
+
schema="source",
|
81 |
+
subset_id="scai_chemical",
|
82 |
+
),
|
83 |
+
BigBioConfig(
|
84 |
+
name="scai_chemical_bigbio_kb",
|
85 |
+
version=BIGBIO_VERSION,
|
86 |
+
description="SCAI Chemical BigBio schema",
|
87 |
+
schema="bigbio_kb",
|
88 |
+
subset_id="scai_chemical",
|
89 |
+
),
|
90 |
+
]
|
91 |
+
|
92 |
+
DEFAULT_CONFIG_NAME = "scai_chemical_source"
|
93 |
+
|
94 |
+
def _info(self) -> datasets.DatasetInfo:
|
95 |
+
if self.config.schema == "source":
|
96 |
+
features = datasets.Features(
|
97 |
+
{
|
98 |
+
"document_id": datasets.Value("string"),
|
99 |
+
"text": datasets.Value("string"),
|
100 |
+
"tokens": [
|
101 |
+
{
|
102 |
+
"offsets": [datasets.Value("int64")],
|
103 |
+
"text": datasets.Value("string"),
|
104 |
+
"tag": datasets.Value("string"),
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"entities": [
|
108 |
+
{
|
109 |
+
"offsets": [datasets.Value("int64")],
|
110 |
+
"text": datasets.Value("string"),
|
111 |
+
"type": datasets.Value("string"),
|
112 |
+
}
|
113 |
+
],
|
114 |
+
}
|
115 |
+
)
|
116 |
+
|
117 |
+
elif self.config.schema == "bigbio_kb":
|
118 |
+
features = kb_features
|
119 |
+
else:
|
120 |
+
raise ValueError("Unrecognized schema: %s" % self.config.schema)
|
121 |
+
|
122 |
+
return datasets.DatasetInfo(
|
123 |
+
description=_DESCRIPTION,
|
124 |
+
features=features,
|
125 |
+
homepage=_HOMEPAGE,
|
126 |
+
license=str(_LICENSE),
|
127 |
+
citation=_CITATION,
|
128 |
+
)
|
129 |
+
|
130 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
131 |
+
"""Returns SplitGenerators."""
|
132 |
+
url = _URLS[_DATASETNAME]
|
133 |
+
filepath = dl_manager.download(url)
|
134 |
+
|
135 |
+
return [
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.TRAIN,
|
138 |
+
gen_kwargs={
|
139 |
+
"filepath": filepath,
|
140 |
+
"split": "train",
|
141 |
+
},
|
142 |
+
),
|
143 |
+
]
|
144 |
+
|
145 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
146 |
+
"""Yields examples as (key, example) tuples."""
|
147 |
+
|
148 |
+
# Iterates through lines in file, collecting all lines belonging
|
149 |
+
# to an example and converting into a single dict
|
150 |
+
examples = []
|
151 |
+
tokens = None
|
152 |
+
with gzip.open(filepath, "rt", encoding="mac_roman") as data_file:
|
153 |
+
print(filepath)
|
154 |
+
for line in data_file:
|
155 |
+
line = line.strip()
|
156 |
+
if line.startswith("###"):
|
157 |
+
tokens = [line]
|
158 |
+
elif line == "":
|
159 |
+
examples.append(self._make_example(tokens))
|
160 |
+
else:
|
161 |
+
tokens.append(line)
|
162 |
+
|
163 |
+
# Returns the examples using the desired schema
|
164 |
+
if self.config.schema == "source":
|
165 |
+
for i, example in enumerate(examples):
|
166 |
+
yield i, example
|
167 |
+
|
168 |
+
elif self.config.schema == "bigbio_kb":
|
169 |
+
for i, example in enumerate(examples):
|
170 |
+
bigbio_example = {
|
171 |
+
"id": "example-" + str(i),
|
172 |
+
"document_id": example["document_id"],
|
173 |
+
"passages": [
|
174 |
+
{
|
175 |
+
"id": "passage-" + str(i),
|
176 |
+
"type": "abstract",
|
177 |
+
"text": [example["text"]],
|
178 |
+
"offsets": [[0, len(example["text"])]],
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"entities": [],
|
182 |
+
"events": [],
|
183 |
+
"coreferences": [],
|
184 |
+
"relations": [],
|
185 |
+
}
|
186 |
+
|
187 |
+
# Converts entities to BigBio format
|
188 |
+
for j, entity in enumerate(example["entities"]):
|
189 |
+
bigbio_example["entities"].append(
|
190 |
+
{
|
191 |
+
"id": "entity-" + str(i) + "-" + str(j),
|
192 |
+
"offsets": [entity["offsets"]],
|
193 |
+
"text": [entity["text"]],
|
194 |
+
"type": entity["type"],
|
195 |
+
"normalized": [],
|
196 |
+
}
|
197 |
+
)
|
198 |
+
|
199 |
+
yield i, bigbio_example
|
200 |
+
|
201 |
+
@staticmethod
|
202 |
+
def _make_example(tokens):
|
203 |
+
"""
|
204 |
+
Converts a list of lines representing tokens into an example dictionary
|
205 |
+
formatted according to the source schema
|
206 |
+
|
207 |
+
:param tokens: list of strings
|
208 |
+
:return: dictionary in the source schema
|
209 |
+
"""
|
210 |
+
document_id = tokens[0][4:]
|
211 |
+
|
212 |
+
text = ""
|
213 |
+
processed_tokens = []
|
214 |
+
entities = []
|
215 |
+
last_offset = 0
|
216 |
+
|
217 |
+
for token in tokens[1:]:
|
218 |
+
token_pieces = token.split("\t")
|
219 |
+
if len(token_pieces) != 5:
|
220 |
+
raise ValueError("Failed to parse line: %s" % token)
|
221 |
+
|
222 |
+
token_text = str(token_pieces[0])
|
223 |
+
token_start = int(token_pieces[1])
|
224 |
+
token_end = int(token_pieces[2])
|
225 |
+
entity_text = str(token_pieces[3])
|
226 |
+
token_tag = str(token_pieces[4])[1:]
|
227 |
+
|
228 |
+
if token_start > last_offset:
|
229 |
+
for _ in range(token_start - last_offset):
|
230 |
+
text += " "
|
231 |
+
elif token_start < last_offset:
|
232 |
+
raise ValueError("Invalid start index: %s" % token)
|
233 |
+
last_offset = token_end
|
234 |
+
|
235 |
+
text += token_text
|
236 |
+
processed_tokens.append(
|
237 |
+
{
|
238 |
+
"offsets": [token_start, token_end],
|
239 |
+
"text": token_text,
|
240 |
+
"tag": token_tag,
|
241 |
+
}
|
242 |
+
)
|
243 |
+
if entity_text != "":
|
244 |
+
entities.append(
|
245 |
+
{
|
246 |
+
"offsets": [token_start, token_start + len(entity_text)],
|
247 |
+
"text": entity_text,
|
248 |
+
"type": token_tag[2:],
|
249 |
+
}
|
250 |
+
)
|
251 |
+
|
252 |
+
return {
|
253 |
+
"document_id": document_id,
|
254 |
+
"text": text,
|
255 |
+
"entities": entities,
|
256 |
+
"tokens": processed_tokens,
|
257 |
+
}
|