|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loader for the SCAI Chemical dataset. |
|
|
|
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated |
|
to give an overview of the different chemical name classes |
|
found in MEDLINE text. |
|
""" |
|
|
|
import gzip |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{kolarik:lrec-ws08, |
|
author = {Kol{\'a}{\vr}ik, Corinna and Klinger, Roman and Friedrich, Christoph M and Hofmann-Apitius, Martin and Fluck, Juliane}, |
|
title = {Chemical Names: {T}erminological Resources and Corpora Annotation}, |
|
booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining}, |
|
year = {2008}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "scai_chemical" |
|
_DISPLAYNAME = "SCAI Chemical" |
|
|
|
_DESCRIPTION = """\ |
|
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated |
|
to give an overview of the different chemical name classes |
|
found in MEDLINE text. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpora-for-chemical-entity-recognition.html" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Corpora-for-Chemical-Entity-Recognition/chemicals-test-corpus-27-04-2009-v3_iob.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "3.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class ScaiChemicalDataset(datasets.GeneratorBasedBuilder): |
|
"""SCAI Chemical is a dataset annotated in 2008 with mentions of chemicals.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="scai_chemical_source", |
|
version=SOURCE_VERSION, |
|
description="SCAI Chemical source schema", |
|
schema="source", |
|
subset_id="scai_chemical", |
|
), |
|
BigBioConfig( |
|
name="scai_chemical_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="SCAI Chemical BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="scai_chemical", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "scai_chemical_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"tokens": [ |
|
{ |
|
"offsets": [datasets.Value("int64")], |
|
"text": datasets.Value("string"), |
|
"tag": datasets.Value("string"), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"offsets": [datasets.Value("int64")], |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise ValueError("Unrecognized schema: %s" % self.config.schema) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
url = _URLS[_DATASETNAME] |
|
filepath = dl_manager.download(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
|
|
examples = [] |
|
tokens = None |
|
with gzip.open(filepath, "rt", encoding="mac_roman") as data_file: |
|
print(filepath) |
|
for line in data_file: |
|
line = line.strip() |
|
if line.startswith("###"): |
|
tokens = [line] |
|
elif line == "": |
|
examples.append(self._make_example(tokens)) |
|
else: |
|
tokens.append(line) |
|
|
|
|
|
if self.config.schema == "source": |
|
for i, example in enumerate(examples): |
|
yield i, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for i, example in enumerate(examples): |
|
bigbio_example = { |
|
"id": "example-" + str(i), |
|
"document_id": example["document_id"], |
|
"passages": [ |
|
{ |
|
"id": "passage-" + str(i), |
|
"type": "abstract", |
|
"text": [example["text"]], |
|
"offsets": [[0, len(example["text"])]], |
|
} |
|
], |
|
"entities": [], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|
|
|
|
for j, entity in enumerate(example["entities"]): |
|
bigbio_example["entities"].append( |
|
{ |
|
"id": "entity-" + str(i) + "-" + str(j), |
|
"offsets": [entity["offsets"]], |
|
"text": [entity["text"]], |
|
"type": entity["type"], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
yield i, bigbio_example |
|
|
|
@staticmethod |
|
def _make_example(tokens): |
|
""" |
|
Converts a list of lines representing tokens into an example dictionary |
|
formatted according to the source schema |
|
|
|
:param tokens: list of strings |
|
:return: dictionary in the source schema |
|
""" |
|
document_id = tokens[0][4:] |
|
|
|
text = "" |
|
processed_tokens = [] |
|
entities = [] |
|
last_offset = 0 |
|
|
|
for token in tokens[1:]: |
|
token_pieces = token.split("\t") |
|
if len(token_pieces) != 5: |
|
raise ValueError("Failed to parse line: %s" % token) |
|
|
|
token_text = str(token_pieces[0]) |
|
token_start = int(token_pieces[1]) |
|
token_end = int(token_pieces[2]) |
|
entity_text = str(token_pieces[3]) |
|
token_tag = str(token_pieces[4])[1:] |
|
|
|
if token_start > last_offset: |
|
for _ in range(token_start - last_offset): |
|
text += " " |
|
elif token_start < last_offset: |
|
raise ValueError("Invalid start index: %s" % token) |
|
last_offset = token_end |
|
|
|
text += token_text |
|
processed_tokens.append( |
|
{ |
|
"offsets": [token_start, token_end], |
|
"text": token_text, |
|
"tag": token_tag, |
|
} |
|
) |
|
if entity_text != "": |
|
entities.append( |
|
{ |
|
"offsets": [token_start, token_start + len(entity_text)], |
|
"text": entity_text, |
|
"type": token_tag[2:], |
|
} |
|
) |
|
|
|
return { |
|
"document_id": document_id, |
|
"text": text, |
|
"entities": entities, |
|
"tokens": processed_tokens, |
|
} |
|
|