File size: 7,294 Bytes
e5e4e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset of 11,832 claims for fact- checking, which are related a range of health topics
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy
(e.g., abortion, mental health, women’s health), and other public health-related stories
"""
import csv
import os
from pathlib import Path
import datasets
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
logger = datasets.utils.logging.get_logger(__name__)
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{kotonya2020explainable,
title={Explainable automated fact-checking for public health claims},
author={Kotonya, Neema and Toni, Francesca},
journal={arXiv preprint arXiv:2010.09926},
year={2020}
}
"""
_DATASETNAME = "pubhealth"
_DISPLAYNAME = "PUBHEALTH"
_DESCRIPTION = """\
A dataset of 11,832 claims for fact- checking, which are related a range of health topics
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy
(e.g., abortion, mental health, women’s health), and other public health-related stories
"""
_HOMEPAGE = "https://github.com/neemakot/Health-Fact-Checking/tree/master/data"
_LICENSE = 'MIT License'
_URLs = {
_DATASETNAME: "https://drive.google.com/uc?export=download&id=1eTtRs5cUlBP5dXsx-FTAlmXuB6JQi2qj"
}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_CLASSES = ["true", "false", "unproven", "mixture"]
class PUBHEALTHDataset(datasets.GeneratorBasedBuilder):
"""Pubhealth text classification dataset"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="pubhealth_source",
version=SOURCE_VERSION,
description="PUBHEALTH source schema",
schema="source",
subset_id="pubhealth",
),
BigBioConfig(
name="pubhealth_bigbio_pairs",
version=BIGBIO_VERSION,
description="PUBHEALTH BigBio schema",
schema="bigbio_pairs",
subset_id="pubhealth",
),
]
DEFAULT_CONFIG_NAME = "pubhealth_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"claim_id": datasets.Value("string"),
"claim": datasets.Value("string"),
"date_published": datasets.Value("string"),
"explanation": datasets.Value("string"),
"fact_checkers": datasets.Value("string"),
"main_text": datasets.Value("string"),
"sources": datasets.Value("string"),
"label": datasets.ClassLabel(names=_CLASSES),
"subjects": datasets.Value("string"),
}
)
# Using in entailment schema
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls = _URLs[_DATASETNAME]
data_dir = Path(dl_manager.download_and_extract(urls))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "PUBHEALTH/train.tsv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "PUBHEALTH/test.tsv"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "PUBHEALTH/dev.tsv"),
"split": "validation",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file,
quotechar='"',
delimiter="\t",
quoting=csv.QUOTE_NONE,
skipinitialspace=True,
)
next(csv_reader, None) # remove column headers
for id_, row in enumerate(csv_reader):
# train.tsv/dev.tsv only has 9 columns
# test.tsv has an additional column at the beginning
# Some entries are malformed, will log skipped lines
if len(row) < 9:
logger.info("Line %s is malformed", id_)
continue
(
claim_id,
claim,
date_published,
explanation,
fact_checkers,
main_text,
sources,
label,
subjects,
) = row[
-9:
] # only take last 9 columns to fix test.tsv disparity
if label not in _CLASSES:
logger.info("Line %s is missing label", id_)
continue
if self.config.schema == "source":
yield id_, {
"claim_id": claim_id,
"claim": claim,
"date_published": date_published,
"explanation": explanation,
"fact_checkers": fact_checkers,
"main_text": main_text,
"sources": sources,
"label": label,
"subjects": subjects,
}
elif self.config.schema == "bigbio_pairs":
yield id_, {
"id": id_, # uid is an unique identifier for every record that starts from 0
"document_id": claim_id,
"text_1": claim,
"text_2": explanation,
"label": label,
}
|