Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,294 Bytes
e5e4e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset of 11,832 claims for fact- checking, which are related a range of health topics
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy
(e.g., abortion, mental health, women’s health), and other public health-related stories
"""

import csv
import os
from pathlib import Path

import datasets

from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

logger = datasets.utils.logging.get_logger(__name__)

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{kotonya2020explainable,
  title={Explainable automated fact-checking for public health claims},
  author={Kotonya, Neema and Toni, Francesca},
  journal={arXiv preprint arXiv:2010.09926},
  year={2020}
}
"""

_DATASETNAME = "pubhealth"
_DISPLAYNAME = "PUBHEALTH"

_DESCRIPTION = """\
A dataset of 11,832 claims for fact- checking, which are related a range of health topics
including biomedical subjects (e.g., infectious diseases, stem cell research), government healthcare policy
(e.g., abortion, mental health, women’s health), and other public health-related stories
"""

_HOMEPAGE = "https://github.com/neemakot/Health-Fact-Checking/tree/master/data"

_LICENSE = 'MIT License'

_URLs = {
    _DATASETNAME: "https://drive.google.com/uc?export=download&id=1eTtRs5cUlBP5dXsx-FTAlmXuB6JQi2qj"
}

_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"

_CLASSES = ["true", "false", "unproven", "mixture"]


class PUBHEALTHDataset(datasets.GeneratorBasedBuilder):
    """Pubhealth text classification dataset"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="pubhealth_source",
            version=SOURCE_VERSION,
            description="PUBHEALTH source schema",
            schema="source",
            subset_id="pubhealth",
        ),
        BigBioConfig(
            name="pubhealth_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="PUBHEALTH BigBio schema",
            schema="bigbio_pairs",
            subset_id="pubhealth",
        ),
    ]

    DEFAULT_CONFIG_NAME = "pubhealth_source"

    def _info(self):

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "claim_id": datasets.Value("string"),
                    "claim": datasets.Value("string"),
                    "date_published": datasets.Value("string"),
                    "explanation": datasets.Value("string"),
                    "fact_checkers": datasets.Value("string"),
                    "main_text": datasets.Value("string"),
                    "sources": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=_CLASSES),
                    "subjects": datasets.Value("string"),
                }
            )

        # Using in entailment schema
        elif self.config.schema == "bigbio_pairs":
            features = pairs_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls = _URLs[_DATASETNAME]
        data_dir = Path(dl_manager.download_and_extract(urls))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "PUBHEALTH/train.tsv"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "PUBHEALTH/test.tsv"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "PUBHEALTH/dev.tsv"),
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples as (key, example) tuples."""

        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(
                csv_file,
                quotechar='"',
                delimiter="\t",
                quoting=csv.QUOTE_NONE,
                skipinitialspace=True,
            )
            next(csv_reader, None)  # remove column headers
            for id_, row in enumerate(csv_reader):
                # train.tsv/dev.tsv only has 9 columns
                # test.tsv has an additional column at the beginning
                #  Some entries are malformed, will log skipped lines
                if len(row) < 9:
                    logger.info("Line %s is malformed", id_)
                    continue
                (
                    claim_id,
                    claim,
                    date_published,
                    explanation,
                    fact_checkers,
                    main_text,
                    sources,
                    label,
                    subjects,
                ) = row[
                    -9:
                ]  # only take last 9 columns to fix test.tsv disparity

                if label not in _CLASSES:
                    logger.info("Line %s is missing label", id_)
                    continue

                if self.config.schema == "source":
                    yield id_, {
                        "claim_id": claim_id,
                        "claim": claim,
                        "date_published": date_published,
                        "explanation": explanation,
                        "fact_checkers": fact_checkers,
                        "main_text": main_text,
                        "sources": sources,
                        "label": label,
                        "subjects": subjects,
                    }

                elif self.config.schema == "bigbio_pairs":
                    yield id_, {
                        "id": id_,  # uid is an unique identifier for every record that starts from 0
                        "document_id": claim_id,
                        "text_1": claim,
                        "text_2": explanation,
                        "label": label,
                    }