|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, qa_features |
|
|
|
_LANGUAGES = ["English", "Spanish"] |
|
_LICENSE = "MIT" |
|
_LOCAL = False |
|
_PUBMED = False |
|
|
|
_CITATION = """\ |
|
@inproceedings{vilares-gomez-rodriguez-2019-head, |
|
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning", |
|
author = "Vilares, David and G{\'o}mez-Rodr{\'i}guez, Carlos", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/P19-1092", |
|
doi = "10.18653/v1/P19-1092", |
|
pages = "960--966" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "head_qa" |
|
_DISPLAYNAME = "HEAD-QA" |
|
|
|
_DESCRIPTION = """\ |
|
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the \ |
|
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the \ |
|
Ministerio de Sanidad, Consumo y Bienestar Social.The dataset contains questions about following topics: medicine, \ |
|
nursing, psychology, chemistry, pharmacology and biology. |
|
""" |
|
|
|
_HOMEPAGE = "https://aghie.github.io/head-qa/" |
|
|
|
_URLS = { |
|
"HEAD": "https://drive.usercontent.google.com/u/0/uc?id=1dUIqVwvoZAtbX_-z5axCoe97XNcFo1No&export=download", |
|
"HEAD_EN": "https://drive.usercontent.google.com/u/0/uc?id=1phryJg4FjCFkn0mSCqIOP2-FscAeKGV0&export=download", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class HeadQADataset(datasets.GeneratorBasedBuilder): |
|
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="head_qa_en_source", |
|
version=SOURCE_VERSION, |
|
description="HeadQA English source schema", |
|
schema="source", |
|
subset_id="head_qa_en", |
|
), |
|
BigBioConfig( |
|
name="head_qa_es_source", |
|
version=SOURCE_VERSION, |
|
description="HeadQA Spanish source schema", |
|
schema="source", |
|
subset_id="head_qa_es", |
|
), |
|
BigBioConfig( |
|
name="head_qa_en_bigbio_qa", |
|
version=BIGBIO_VERSION, |
|
description="HeadQA English Question Answering BigBio schema", |
|
schema="bigbio_qa", |
|
subset_id="head_qa_en", |
|
), |
|
BigBioConfig( |
|
name="head_qa_es_bigbio_qa", |
|
version=BIGBIO_VERSION, |
|
description="HeadQA Spanish Question Answering BigBio schema", |
|
schema="bigbio_qa", |
|
subset_id="head_qa_es", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "head_qa_en_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"qid": datasets.Value("int32"), |
|
"qtext": datasets.Value("string"), |
|
"ra": datasets.Value("int32"), |
|
"answers": [ |
|
{ |
|
"aid": datasets.Value("int32"), |
|
"atext": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_qa": |
|
features = qa_features |
|
else: |
|
raise NotImplementedError(f"Schema {self.config.schema} is not supported") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.subset_id == "head_qa_en": |
|
data_dir = Path(dl_manager.download_and_extract(_URLS["HEAD_EN"])) / "HEAD_EN" |
|
subset_name = "HEAD_EN" |
|
|
|
elif self.config.subset_id == "head_qa_es": |
|
data_dir = Path(dl_manager.download_and_extract(_URLS["HEAD"])) / "HEAD" |
|
subset_name = "HEAD" |
|
|
|
else: |
|
raise NotImplementedError(f"Subset {self.config.subset_id} is not supported") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"input_json_file": data_dir / f"train_{subset_name}.json", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"input_json_file": data_dir / f"dev_{subset_name}.json", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"input_json_file": data_dir / f"test_{subset_name}.json", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, input_json_file: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
for key, example in self._generate_source_documents(input_json_file): |
|
yield key, example |
|
|
|
elif self.config.schema == "bigbio_qa": |
|
for key, example in self._generate_source_documents(input_json_file): |
|
yield self._source_to_qa(example) |
|
|
|
def _generate_source_documents(self, input_json_file: Path) -> Tuple[str, Dict]: |
|
"""Generates source instances.""" |
|
|
|
with input_json_file.open("r", encoding="utf8") as file_stream: |
|
head_qa = json.load(file_stream) |
|
|
|
for exam_id, exam in enumerate(head_qa["exams"]): |
|
content = head_qa["exams"][exam] |
|
name = content["name"].strip() |
|
year = content["year"].strip() |
|
category = content["category"].strip() |
|
|
|
for question in content["data"]: |
|
qid = int(question["qid"].strip()) |
|
qtext = question["qtext"].strip() |
|
ra = int(question["ra"].strip()) |
|
|
|
aids = [answer["aid"] for answer in question["answers"]] |
|
atexts = [answer["atext"].strip() for answer in question["answers"]] |
|
answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)] |
|
|
|
instance_id = f"{exam_id}_{qid}" |
|
instance = { |
|
"name": name, |
|
"year": year, |
|
"category": category, |
|
"qid": qid, |
|
"qtext": qtext, |
|
"ra": ra, |
|
"answers": answers, |
|
} |
|
|
|
yield instance_id, instance |
|
|
|
def _source_to_qa(self, example: Dict) -> Tuple[str, Dict]: |
|
"""Converts a source example to BigBio example.""" |
|
|
|
instance = { |
|
"id": example["name"] + "_qid_" + str(example["qid"]), |
|
"question_id": example["qid"], |
|
"document_id": None, |
|
"question": example["qtext"], |
|
"type": "multiple_choice", |
|
"choices": [answer["atext"] for answer in example["answers"]], |
|
"context": None, |
|
"answer": [next(filter(lambda answer: answer["aid"] == example["ra"], example["answers"]))["atext"]], |
|
} |
|
|
|
return instance["id"], instance |
|
|