File size: 11,012 Bytes
3ff7e19 40d7137 3ff7e19 0be64ef 3ff7e19 0be64ef 3ff7e19 c6f1773 3ff7e19 0be64ef 3ff7e19 0be64ef 3ff7e19 b697c42 3ff7e19 0be64ef 3ff7e19 0be64ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import re
from typing import Dict, List, Tuple
import datasets
from bioc import biocxml
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import get_texts_and_offsets_from_bioc_ann
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@Article{Wei2015,
author={Wei, Chih-Hsuan and Kao, Hung-Yu and Lu, Zhiyong},
title={GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains},
journal={BioMed Research International},
year={2015},
month={Aug},
day={25},
publisher={Hindawi Publishing Corporation},
volume={2015},
pages={918710},
issn={2314-6133},
doi={10.1155/2015/918710},
url={https://doi.org/10.1155/2015/918710}
}
"""
_DATASETNAME = "gnormplus"
_DISPLAYNAME = "GNormPlus"
_DESCRIPTION = """\
We re-annotated two existing gene corpora. The BioCreative II GN corpus is a widely used data set for benchmarking GN
tools and includes document-level annotations for a total of 543 articles (281 in its training set; and 262 in test).
The Citation GIA Test Collection was recently created for gene indexing at the NLM and includes 151 PubMed abstracts
with both mention-level and document-level annotations. They are selected because both have a focus on human genes.
For both corpora, we added annotations of gene families and protein domains. For the BioCreative GN corpus, we also
added mention-level gene annotations. As a result, in our new corpus, there are a total of 694 PubMed articles.
PubTator was used as our annotation tool along with BioC formats.
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/"
_LICENSE = "UNKNOWN"
_URLS = {
_DATASETNAME: "https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/GNormPlus/GNormPlusCorpus.zip"
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class GnormplusDataset(datasets.GeneratorBasedBuilder):
"""Dataset loader for GNormPlus corpus."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="gnormplus_source",
version=SOURCE_VERSION,
description="gnormplus source schema",
schema="source",
subset_id="gnormplus",
),
BigBioConfig(
name="gnormplus_bigbio_kb",
version=BIGBIO_VERSION,
description="gnormplus BigBio schema",
schema="bigbio_kb",
subset_id="gnormplus",
),
]
DEFAULT_CONFIG_NAME = "gnormplus_source"
_re_tax_id = re.compile(r"(?P<db_id>\d+)\([tT]ax:(?P<tax_id>\d+)\)")
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"doc_id": datasets.Value("string"),
"passages": [
{
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"location": {
"offset": datasets.Value("int64"),
"length": datasets.Value("int64"),
},
}
],
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
"tax_id": datasets.Value("string"),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
else:
raise NotImplementedError(self.config.schema)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": [
os.path.join(data_dir, "GNormPlusCorpus/BC2GNtrain.BioC.xml"),
# This sub-part of the corpus is part of the GIA Test Collection, however in
# the paper they used it only for training their models. So we also add it to the
# training split.
os.path.join(data_dir, "GNormPlusCorpus/NLMIAT.BioC.xml"),
],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": [
os.path.join(data_dir, "GNormPlusCorpus/BC2GNtest.BioC.xml"),
]
},
),
]
def _parse_bioc_entity(self, uid, bioc_ann, db_id_key="NCBIGene", insert_tax_id=False):
offsets, texts = get_texts_and_offsets_from_bioc_ann(bioc_ann)
_type = bioc_ann.infons["type"]
# parse db ids
normalized = []
if _type in bioc_ann.infons:
for _id in bioc_ann.infons[_type].split(","):
match = self._re_tax_id.match(_id)
if match:
_id = match.group("db_id")
n = {"db_name": db_id_key, "db_id": _id}
if insert_tax_id:
n["tax_id"] = match.group("tax_id") if match else None
normalized.append(n)
return {
"id": uid,
"offsets": offsets,
"text": texts,
"type": _type,
"normalized": normalized,
}
def _generate_examples(self, filepaths) -> Tuple[int, Dict]:
uid = map(str, itertools.count(start=0, step=1))
for filepath in filepaths:
with open(filepath, "r") as fp:
collection = biocxml.load(fp)
for _, document in enumerate(collection.documents):
idx = next(uid)
text = " ".join([passage.text for passage in document.passages])
insert_tax = self.config.schema == "source"
entities = [
self._parse_bioc_entity(next(uid), entity, insert_tax_id=insert_tax)
for passage in document.passages
for entity in passage.annotations
]
# Some of the entities have a off-by-one error. Correct these annotations!
self.adjust_entity_offsets(text, entities)
if self.config.schema == "source":
features = {
"doc_id": document.id,
"passages": [
{
"text": passage.text,
"type": passage.infons["type"],
"location": {
"offset": passage.offset,
"length": passage.total_span.length,
},
}
for passage in document.passages
],
"entities": entities,
}
yield idx, features
elif self.config.schema == "bigbio_kb":
# passage offsets/lengths do not connect, recalculate them for this schema.
passage_spans = []
start = 0
for passage in document.passages:
end = start + len(passage.text)
passage_spans.append((start, end))
start = end + 1
features = {
"id": next(uid),
"document_id": document.id,
"passages": [
{
"id": next(uid),
"type": passage.infons["type"],
"text": [passage.text],
"offsets": [span],
}
for passage, span in zip(document.passages, passage_spans)
],
"entities": entities,
"events": [],
"coreferences": [],
"relations": [],
}
yield idx, features
else:
raise NotImplementedError(self.config.schema)
def adjust_entity_offsets(self, text: str, entities: List[Dict]):
for entity in entities:
start, end = entity["offsets"][0]
entity_mention = entity["text"][0]
if not text[start:end] == entity_mention:
if text[start - 1 : end - 1] == entity_mention:
entity["offsets"] = [(start - 1, end - 1)]
elif text[start : end - 1] == entity_mention:
entity["offsets"] = [(start, end - 1)]
|