gabrielaltay
commited on
Commit
·
276d3b7
1
Parent(s):
174bebf
upload biored/biored.py to hub from bigbio repo
Browse files
biored.py
CHANGED
@@ -21,6 +21,7 @@ on a set of 600 PubMed articles
|
|
21 |
|
22 |
import itertools
|
23 |
import os
|
|
|
24 |
from typing import Dict, List, Tuple
|
25 |
|
26 |
import datasets
|
@@ -30,7 +31,7 @@ from .bigbiohub import kb_features
|
|
30 |
from .bigbiohub import BigBioConfig
|
31 |
from .bigbiohub import Tasks
|
32 |
|
33 |
-
_LANGUAGES = [
|
34 |
_PUBMED = True
|
35 |
_LOCAL = False
|
36 |
_CITATION = """\
|
@@ -65,13 +66,13 @@ on a set of 600 PubMed articles
|
|
65 |
|
66 |
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"
|
67 |
|
68 |
-
_LICENSE =
|
69 |
|
70 |
_URLS = {
|
71 |
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
|
72 |
}
|
73 |
|
74 |
-
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
75 |
|
76 |
_SOURCE_VERSION = "1.0.0"
|
77 |
|
@@ -81,7 +82,8 @@ logger = datasets.utils.logging.get_logger(__name__)
|
|
81 |
|
82 |
|
83 |
class BioredDataset(datasets.GeneratorBasedBuilder):
|
84 |
-
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and
|
|
|
85 |
|
86 |
# For bigbio_kb, this dataset uses a naming convention as
|
87 |
# uid_[title/abstract/relation/entity_id]_[entity/relation_uid]
|
@@ -108,6 +110,15 @@ class BioredDataset(datasets.GeneratorBasedBuilder):
|
|
108 |
|
109 |
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def _info(self) -> datasets.DatasetInfo:
|
112 |
|
113 |
if self.config.schema == "source":
|
@@ -127,9 +138,7 @@ class BioredDataset(datasets.GeneratorBasedBuilder):
|
|
127 |
"text": datasets.Sequence(datasets.Value("string")),
|
128 |
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
129 |
"concept_id": datasets.Value("string"),
|
130 |
-
"semantic_type_id": datasets.
|
131 |
-
datasets.Value("string")
|
132 |
-
),
|
133 |
}
|
134 |
],
|
135 |
"relations": [
|
@@ -198,51 +207,77 @@ class BioredDataset(datasets.GeneratorBasedBuilder):
|
|
198 |
with open(filepath, "r", encoding="utf8") as fstream:
|
199 |
uid = itertools.count(0)
|
200 |
for raw_document in self.generate_raw_docs(fstream):
|
201 |
-
entities_in_doc = dict()
|
202 |
document = self.parse_raw_doc(raw_document)
|
203 |
-
pmid = document.pop("pmid")
|
204 |
document["id"] = str(next(uid))
|
205 |
document["document_id"] = pmid
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
{
|
213 |
-
"id":
|
214 |
-
"type":
|
215 |
"text": entity["text"],
|
216 |
-
"normalized":
|
217 |
"offsets": entity["offsets"],
|
218 |
}
|
219 |
)
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
221 |
rel_uid = itertools.count(0)
|
222 |
for relation in document["relations"]:
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
"normalized": [],
|
238 |
-
}
|
239 |
-
)
|
240 |
for passage in document["passages"]:
|
241 |
passage["id"] = document["id"] + "_" + passage["type"]
|
242 |
-
|
243 |
-
document["
|
|
|
244 |
document["events"] = []
|
245 |
document["coreferences"] = []
|
|
|
246 |
yield document["document_id"], document
|
247 |
|
248 |
def generate_raw_docs(self, fstream):
|
@@ -301,20 +336,16 @@ class BioredDataset(datasets.GeneratorBasedBuilder):
|
|
301 |
# Entities handled here
|
302 |
start_idx = _type_ind
|
303 |
end_idx, mention, semantic_type_id, entity_ids = rest
|
304 |
-
|
305 |
{
|
306 |
"offsets": [[int(start_idx), int(end_idx)]],
|
307 |
"text": [mention],
|
308 |
-
"semantic_type_id": semantic_type_id
|
309 |
-
"concept_id":
|
310 |
}
|
311 |
-
for entity_id in entity_ids.split(",")
|
312 |
-
]
|
313 |
-
entities.extend(entity)
|
314 |
-
else:
|
315 |
-
logger.warn(
|
316 |
-
f"Skipping annotation in Document ID: {_pmid}. Unexpected format"
|
317 |
)
|
|
|
|
|
318 |
return {
|
319 |
"pmid": pmid,
|
320 |
"passages": passages,
|
|
|
21 |
|
22 |
import itertools
|
23 |
import os
|
24 |
+
from collections import defaultdict
|
25 |
from typing import Dict, List, Tuple
|
26 |
|
27 |
import datasets
|
|
|
31 |
from .bigbiohub import BigBioConfig
|
32 |
from .bigbiohub import Tasks
|
33 |
|
34 |
+
_LANGUAGES = ["English"]
|
35 |
_PUBMED = True
|
36 |
_LOCAL = False
|
37 |
_CITATION = """\
|
|
|
66 |
|
67 |
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"
|
68 |
|
69 |
+
_LICENSE = "License information unavailable"
|
70 |
|
71 |
_URLS = {
|
72 |
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
|
73 |
}
|
74 |
|
75 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
|
76 |
|
77 |
_SOURCE_VERSION = "1.0.0"
|
78 |
|
|
|
82 |
|
83 |
|
84 |
class BioredDataset(datasets.GeneratorBasedBuilder):
|
85 |
+
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and
|
86 |
+
relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles"""
|
87 |
|
88 |
# For bigbio_kb, this dataset uses a naming convention as
|
89 |
# uid_[title/abstract/relation/entity_id]_[entity/relation_uid]
|
|
|
110 |
|
111 |
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"
|
112 |
|
113 |
+
TYPE_TO_DATABASE = {
|
114 |
+
"CellLine": "Cellosaurus",
|
115 |
+
"ChemicalEntity": "MESH",
|
116 |
+
"DiseaseOrPhenotypicFeature": "MESH", # Some diseases are normalized to OMIM (~ handled by special rules)
|
117 |
+
"GeneOrGeneProduct": "NCBIGene",
|
118 |
+
"OrganismTaxon": "NCBITaxon",
|
119 |
+
"SequenceVariant": "dbSNP", # Not all variants are normalized to dbSNP (~ handled by special rules)
|
120 |
+
}
|
121 |
+
|
122 |
def _info(self) -> datasets.DatasetInfo:
|
123 |
|
124 |
if self.config.schema == "source":
|
|
|
138 |
"text": datasets.Sequence(datasets.Value("string")),
|
139 |
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
140 |
"concept_id": datasets.Value("string"),
|
141 |
+
"semantic_type_id": datasets.Value("string"),
|
|
|
|
|
142 |
}
|
143 |
],
|
144 |
"relations": [
|
|
|
207 |
with open(filepath, "r", encoding="utf8") as fstream:
|
208 |
uid = itertools.count(0)
|
209 |
for raw_document in self.generate_raw_docs(fstream):
|
|
|
210 |
document = self.parse_raw_doc(raw_document)
|
211 |
+
pmid = str(document.pop("pmid"))
|
212 |
document["id"] = str(next(uid))
|
213 |
document["document_id"] = pmid
|
214 |
+
|
215 |
+
# Parse entities
|
216 |
+
entities = []
|
217 |
+
entity_id_to_mentions = defaultdict(list) # Maps database ids to mention ids
|
218 |
+
for i, entity in enumerate(document["entities"]):
|
219 |
+
internal_id = pmid + "_" + str(i)
|
220 |
+
|
221 |
+
# Some entities are normalized to multiple database ids, therefore we
|
222 |
+
# may have multiple identifiers per mention
|
223 |
+
normalized_entity_ids = []
|
224 |
+
for database_id in entity["concept_id"].split(","):
|
225 |
+
database_id = database_id.strip()
|
226 |
+
entity_type = entity["semantic_type_id"]
|
227 |
+
|
228 |
+
# First check special db_name and database id assignment rules
|
229 |
+
if entity_type == "DiseaseOrPhenotypicFeature" and database_id.lower().startswith("omim"):
|
230 |
+
db_name = "OMIM"
|
231 |
+
database_id = database_id.split(":")[-1]
|
232 |
+
elif entity_type == "SequenceVariant" and not database_id.startswith("rs"):
|
233 |
+
db_name = "custom"
|
234 |
+
|
235 |
+
# If no special rule applies -> just take the default db_name for the entity type
|
236 |
+
else:
|
237 |
+
db_name = self.TYPE_TO_DATABASE[entity_type]
|
238 |
+
|
239 |
+
normalized_entity_ids.append({"db_name": db_name, "db_id": database_id})
|
240 |
+
entity_id_to_mentions[database_id].append(internal_id)
|
241 |
+
|
242 |
+
entities.append(
|
243 |
{
|
244 |
+
"id": internal_id,
|
245 |
+
"type": entity_type,
|
246 |
"text": entity["text"],
|
247 |
+
"normalized": normalized_entity_ids,
|
248 |
"offsets": entity["offsets"],
|
249 |
}
|
250 |
)
|
251 |
+
|
252 |
+
# BioRed provides abstract-level annotations for entity-linked relation pairs rather than
|
253 |
+
# materializing links between all surface form mentions of relation. For example document 11009181
|
254 |
+
# in train has (Positive_Correlation, D007980, D004409). Analogous to BC5CDR we enumerate all
|
255 |
+
# mention pairs concerning the entities in the triple.
|
256 |
+
relations = []
|
257 |
rel_uid = itertools.count(0)
|
258 |
for relation in document["relations"]:
|
259 |
+
head_mentions = entity_id_to_mentions[str(relation["concept_1"])]
|
260 |
+
tail_mentions = entity_id_to_mentions[str(relation["concept_2"])]
|
261 |
+
|
262 |
+
for head, tail in itertools.product(head_mentions, tail_mentions):
|
263 |
+
relations.append(
|
264 |
+
{
|
265 |
+
"id": document["id"] + "_relation_" + str(next(rel_uid)),
|
266 |
+
"type": relation["type"],
|
267 |
+
"arg1_id": head,
|
268 |
+
"arg2_id": tail,
|
269 |
+
"normalized": [],
|
270 |
+
}
|
271 |
+
)
|
272 |
+
|
|
|
|
|
|
|
273 |
for passage in document["passages"]:
|
274 |
passage["id"] = document["id"] + "_" + passage["type"]
|
275 |
+
|
276 |
+
document["entities"] = entities
|
277 |
+
document["relations"] = relations
|
278 |
document["events"] = []
|
279 |
document["coreferences"] = []
|
280 |
+
|
281 |
yield document["document_id"], document
|
282 |
|
283 |
def generate_raw_docs(self, fstream):
|
|
|
336 |
# Entities handled here
|
337 |
start_idx = _type_ind
|
338 |
end_idx, mention, semantic_type_id, entity_ids = rest
|
339 |
+
entities.append(
|
340 |
{
|
341 |
"offsets": [[int(start_idx), int(end_idx)]],
|
342 |
"text": [mention],
|
343 |
+
"semantic_type_id": semantic_type_id,
|
344 |
+
"concept_id": entity_ids,
|
345 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
)
|
347 |
+
else:
|
348 |
+
logger.warn(f"Skipping annotation in Document ID: {_pmid}. Unexpected format")
|
349 |
return {
|
350 |
"pmid": pmid,
|
351 |
"passages": passages,
|