Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 22,170 Bytes
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73e58c0
72974b7
73e58c0
2c29259
 
 
 
 
 
 
aa817f0
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa817f0
2c29259
aa817f0
 
2c29259
aa817f0
 
 
 
 
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa817f0
 
 
 
 
2c29259
 
 
aa817f0
2c29259
 
 
aa817f0
2c29259
 
 
aa817f0
2c29259
 
 
 
 
aa817f0
 
 
 
 
2c29259
 
 
aa817f0
2c29259
aa817f0
 
 
 
 
 
2c29259
 
aa817f0
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa817f0
2c29259
 
aa817f0
 
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72974b7
2c29259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import brat_parse_to_bigbio_kb
from .bigbiohub import remove_prefix


_DATASETNAME = "bionlp_st_2019_bb"
_DISPLAYNAME = "BioNLP 2019 BB"

_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"

_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{bossy-etal-2019-bacteria,
    title = "Bacteria Biotope at {B}io{NLP} Open Shared Tasks 2019",
    author = "Bossy, Robert  and
      Del{\'e}ger, Louise  and
      Chaix, Estelle  and
      Ba, Mouhamadou  and
      N{\'e}dellec, Claire",
    booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5719",
    doi = "10.18653/v1/D19-5719",
    pages = "121--131",
    abstract = "This paper presents the fourth edition of the Bacteria
    Biotope task at BioNLP Open Shared Tasks 2019. The task focuses on
    the extraction of the locations and phenotypes of microorganisms
    from PubMed abstracts and full-text excerpts, and the characterization
    of these entities with respect to reference knowledge sources (NCBI
    taxonomy, OntoBiotope ontology). The task is motivated by the importance
    of the knowledge on biodiversity for fundamental research and applications
    in microbiology. The paper describes the different proposed subtasks, the
    corpus characteristics, and the challenge organization. We also provide an
    analysis of the results obtained by participants, and inspect the evolution
    of the results since the last edition in 2016.",
}
"""

_DESCRIPTION = """\
The task focuses on the extraction of the locations and phenotypes of
microorganisms from PubMed abstracts and full-text excerpts, and the
characterization of these entities with respect to reference knowledge
sources (NCBI taxonomy, OntoBiotope ontology). The task is motivated by
the importance of the knowledge on biodiversity for fundamental research
and applications in microbiology.

"""

_HOMEPAGE = "https://sites.google.com/view/bb-2019/dataset"

_LICENSE = "License information unavailable"

_SUBTASKS = ["norm", "norm+ner", "rel", "rel+ner", "kb", "kb+ner"]
_FILENAMES = ["train", "dev", "test"]
_URLs = {
    subtask: {
        filename: f"data/{subtask}/BioNLP-OST-2019_BB-{subtask}_{filename}.zip"
        for filename in _FILENAMES
    }
    for subtask in _SUBTASKS
}

_SUPPORTED_TASKS = [
    Tasks.NAMED_ENTITY_RECOGNITION,
    Tasks.NAMED_ENTITY_DISAMBIGUATION,
    Tasks.RELATION_EXTRACTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class bionlp_st_2019_bb(datasets.GeneratorBasedBuilder):
    """This dataset is the fourth edition of the Bacteria
    Biotope task at BioNLP Open Shared Tasks 2019"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="bionlp_st_2019_bb_norm_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb entity normalization source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_norm+ner_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb entity recognition and normalization source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_rel_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb relation extraction source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_rel+ner_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb entity recognition and relation extraction source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_kb_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb entity normalization and relation extraction source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_kb+ner_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2019_bb entity recognition and normalization and relation extraction source schema",
            schema="source",
            subset_id="bionlp_st_2019_bb",
        ),
        BigBioConfig(
            name="bionlp_st_2019_bb_bigbio_kb",
            version=BIGBIO_VERSION,
            description="bionlp_st_2019_bb BigBio schema",
            schema="bigbio_kb",
            subset_id="bionlp_st_2019_bb",
        ),
    ]

    DEFAULT_CONFIG_NAME = "bionlp_st_2019_bb_kb+ner_source"

    def _info(self):
        """
        - `features` defines the schema of the parsed data set. The schema depends on the
        chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
        original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
        canonical KB-task schema defined in `biomedical/schemas/kb.py`.
        """
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                        {
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "events": [  # E line in brat
                        {
                            "trigger": datasets.Value(
                                "string"
                            ),  # refers to the text_bound_annotation of the trigger,
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arguments": datasets.Sequence(
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ],
                    "relations": [  # R line in brat
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                    "equivalences": [  # Equiv line in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                    "attributes": [  # M or A lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ],
                    "normalizations": [  # N lines in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "resource_name": datasets.Value(
                                "string"
                            ),  # Name of the resource, e.g. "Wikipedia"
                            "cuid": datasets.Value(
                                "string"
                            ),  # ID in the resource, e.g. 534366
                        }
                    ],
                },
            )
        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        subtask = self.config.name.split("_")[4]
        if subtask == "bigbio":
            subtask = "kb+ner"
        my_urls = _URLs[subtask]
        data_files = dl_manager.download_and_extract(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["train"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["dev"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["test"])},
            ),
        ]

    def _generate_examples(self, data_files: Path):
        if self.config.schema == "source":
            guid = 0
            for data_file in data_files:
                txt_file = Path(data_file)
                if txt_file.suffix != ".txt":
                    continue
                example = self.parse_brat_file(txt_file)
                example["id"] = str(guid)
                yield guid, example
                guid += 1
        elif self.config.schema == "bigbio_kb":
            guid = 0
            for data_file in data_files:
                txt_file = Path(data_file)
                if txt_file.suffix != ".txt":
                    continue
                example = brat_parse_to_bigbio_kb(self.parse_brat_file(txt_file))
                example["id"] = str(guid)
                yield guid, example
                guid += 1
        else:
            raise ValueError(f"Invalid config: {self.config.name}")

    def parse_brat_file(
        self,
        txt_file: Path,
        annotation_file_suffixes: List[str] = None,
        parse_notes: bool = False,
    ) -> Dict:
        """
        Parse a brat file into the schema defined below.
        `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
        Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
        e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.

        Will include annotator notes, when `parse_notes == True`.

        brat_features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "document_id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                    {
                        "offsets": datasets.Sequence([datasets.Value("int32")]),
                        "text": datasets.Sequence(datasets.Value("string")),
                        "type": datasets.Value("string"),
                        "id": datasets.Value("string"),
                    }
                ],
                "events": [  # E line in brat
                    {
                        "trigger": datasets.Value(
                            "string"
                        ),  # refers to the text_bound_annotation of the trigger,
                        "id": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "arguments": datasets.Sequence(
                            {
                                "role": datasets.Value("string"),
                                "ref_id": datasets.Value("string"),
                            }
                        ),
                    }
                ],
                "relations": [  # R line in brat
                    {
                        "id": datasets.Value("string"),
                        "head": {
                            "ref_id": datasets.Value("string"),
                            "role": datasets.Value("string"),
                        },
                        "tail": {
                            "ref_id": datasets.Value("string"),
                            "role": datasets.Value("string"),
                        },
                        "type": datasets.Value("string"),
                    }
                ],
                "equivalences": [  # Equiv line in brat
                    {
                        "id": datasets.Value("string"),
                        "ref_ids": datasets.Sequence(datasets.Value("string")),
                    }
                ],
                "attributes": [  # M or A lines in brat
                    {
                        "id": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "ref_id": datasets.Value("string"),
                        "value": datasets.Value("string"),
                    }
                ],
                "normalizations": [  # N lines in brat
                    {
                        "id": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "ref_id": datasets.Value("string"),
                        "resource_name": datasets.Value(
                            "string"
                        ),  # Name of the resource, e.g. "Wikipedia"
                        "cuid": datasets.Value(
                            "string"
                        ),  # ID in the resource, e.g. 534366
                        "text": datasets.Value(
                            "string"
                        ),  # Human readable description/name of the entity, e.g. "Barack Obama"
                    }
                ],
                ### OPTIONAL: Only included when `parse_notes == True`
                "notes": [  # # lines in brat
                    {
                        "id": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "ref_id": datasets.Value("string"),
                        "text": datasets.Value("string"),
                    }
                ],
            },
            )
        """

        example = {}
        example["document_id"] = txt_file.with_suffix("").name
        with txt_file.open(encoding="utf-8") as f:
            if self.config.schema == "bigbio_kb":
                example["text"] = f.read().replace("\u00A0", " ").replace("\n", " ")
            else:
                example["text"] = f.read()

        # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
        # for event extraction
        if annotation_file_suffixes is None:
            annotation_file_suffixes = [".a1", ".a2", ".ann"]

        if len(annotation_file_suffixes) == 0:
            raise AssertionError(
                "At least one suffix for the to-be-read annotation files should be given!"
            )

        ann_lines = []
        for suffix in annotation_file_suffixes:
            annotation_file = txt_file.with_suffix(suffix)
            try:
                with annotation_file.open(encoding="utf8") as f:
                    ann_lines.extend(f.readlines())
            except Exception:
                continue

        example["text_bound_annotations"] = []
        example["events"] = []
        example["relations"] = []
        example["equivalences"] = []
        example["attributes"] = []
        example["normalizations"] = []

        if parse_notes:
            example["notes"] = []

        for line in ann_lines:
            line = line.strip()
            if not line:
                continue

            if line.startswith("T"):  # Text bound
                ann = {}
                fields = line.split("\t")
                ann["id"] = fields[0]
                ann["type"] = fields[1].split()[0]
                if ann["type"] in ["Title", "Paragraph"]:
                    continue
                ann["offsets"] = []
                span_str = remove_prefix(fields[1], (ann["type"] + " "))
                text = fields[2]
                for span in span_str.split(";"):
                    start, end = span.split()
                    ann["offsets"].append([int(start), int(end)])

                # Heuristically split text of discontiguous entities into chunks
                ann["text"] = []
                if len(ann["offsets"]) > 1:
                    i = 0
                    for start, end in ann["offsets"]:
                        chunk_len = end - start
                        if self.config.schema == "bigbio_kb":
                            ann["text"].append(
                                text[i : chunk_len + i].replace("\u00A0", " ")
                            )
                        else:
                            ann["text"].append(text[i : chunk_len + i])
                        i += chunk_len
                        while i < len(text) and text[i] == " ":
                            i += 1
                else:
                    if self.config.schema == "bigbio_kb":
                        ann["text"] = [text.replace("\u00A0", " ")]
                    else:
                        ann["text"] = [text]

                example["text_bound_annotations"].append(ann)

            elif line.startswith("E"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]

                ann["type"], ann["trigger"] = fields[1].split()[0].split(":")

                ann["arguments"] = []
                for role_ref_id in fields[1].split()[1:]:
                    argument = {
                        "role": (role_ref_id.split(":"))[0],
                        "ref_id": (role_ref_id.split(":"))[1],
                    }
                    ann["arguments"].append(argument)

                example["events"].append(ann)

            elif line.startswith("R"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]
                ann["type"] = fields[1].split()[0]

                ann["head"] = {
                    "role": fields[1].split()[1].split(":")[0],
                    "ref_id": fields[1].split()[1].split(":")[1],
                }
                ann["tail"] = {
                    "role": fields[1].split()[2].split(":")[0],
                    "ref_id": fields[1].split()[2].split(":")[1],
                }

                example["relations"].append(ann)

            # '*' seems to be the legacy way to mark equivalences,
            # but I couldn't find any info on the current way
            # this might have to be adapted dependent on the brat version
            # of the annotation
            elif line.startswith("*"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]
                ann["ref_ids"] = fields[1].split()[1:]

                example["equivalences"].append(ann)

            elif line.startswith("A") or line.startswith("M"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]

                info = fields[1].split()
                ann["type"] = info[0]
                ann["ref_id"] = info[1]

                if len(info) > 2:
                    ann["value"] = info[2]
                else:
                    ann["value"] = ""

                example["attributes"].append(ann)

            elif line.startswith("N"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]

                info = fields[1].split()

                ann["ref_id"] = info[1].split(":")[-1]
                ann["resource_name"] = info[0]
                ann["cuid"] = "".join(info[2].split(":")[1:])
                example["normalizations"].append(ann)

            elif parse_notes and line.startswith("#"):
                ann = {}
                fields = line.split("\t")

                ann["id"] = fields[0]
                ann["text"] = fields[2]

                info = fields[1].split()

                ann["type"] = info[0]
                ann["ref_id"] = info[1]
                example["notes"].append(ann)
        return example