dinner-party-corpus / convert.py
benjamin-paine's picture
Upload convert.py
8935b7c verified
# Converts Amazon's DiPCo dataset to parquet format in an utterance-wise manner
# Author: Benjamin Paine <[email protected]>
from __future__ import annotations
import os
import gc
import json
import torch
import torchaudio
from time import perf_counter
from datasets import Dataset, Features, Audio, Value, ClassLabel
from typing import Sequence, Dict, Any, Iterable, Iterator, TYPE_CHECKING
if TYPE_CHECKING:
# Guard this import for type-checking only
from typing_extensions import Literal
class RotatingAudioDirectoryData:
"""
A helper class for reading data just-in-time from a directory, and maintaining
a FIFO-based cache of data in memory.
Also maintains a loose memory size, evicting last-read data when necessary.
Accessing data will opaquely read from disk when eneded, with access resetting
its place in the eviction queue.
"""
data: Dict[str, torch.Tensor]
data_sizes: Dict[str, int]
data_access_times: Dict[str, float]
sample_rate: int
eviction_rate: float
def __init__(self, directory: str, max_size: int, eviction_rate: float=0.25) -> None:
"""
:param directory: The directory to read data from.
:param max_size: The maximum size of data to keep in memory.
:param eviction_rate: The fraction of data to evict when full.
"""
self.directory = directory
self.max_size = max_size
self.file_names = [
f for f in os.listdir(directory)
if f.endswith(".wav")
and not f.startswith(".")
]
self.data = {}
self.data_sizes = {}
self.access_times = {}
self.eviction_rate = eviction_rate
self.sample_rate = 0
self.read(self.file_names[0]) # Get sample rate
@property
def size(self) -> int:
"""
:return: The total size of data in memory.
"""
return sum(self.data_sizes.values())
def evict(self) -> None:
"""
Evicts the least-recently accessed items from memory.
This is made to be called infrequently, so it will evict up to the
configured eviction rate (default 25%) of the total data.
"""
num_to_evict = int(self.eviction_rate * len(self.data))
evict_keys = sorted(self.access_times, key=self.access_times.get)[:num_to_evict]
for key in evict_keys:
del self.data[key]
del self.data_sizes[key]
del self.access_times[key]
gc.collect()
def check_evict(self, size: int) -> None:
"""
Checks if the new data will fit, and evicts if necessary.
:param size: The size of the new data to add.
"""
if self.size + size > self.max_size:
self.evict()
def read(self, file_name: str) -> None:
"""
Reads a file from disk and stores it in memory.
:param file_name: The name of the file to read.
"""
file_path = os.path.join(self.directory, file_name)
file_size = os.path.getsize(file_path) * 2 # 16-bit audio
self.check_evict(file_size)
try:
data, sample_rate = torchaudio.load(file_path)
except RuntimeError as e:
raise RuntimeError(f"Error reading file {file_path}: {e}")
if self.sample_rate == 0:
self.sample_rate = sample_rate
assert self.sample_rate == sample_rate, "Unexpected sample rate mismatch"
self.data[file_name] = data[0] # Mono audio
self.data_sizes[file_name] = file_size
self.access_times[file_name] = perf_counter()
def __getitem__(self, key: str) -> torch.Tensor:
"""
Gets an item from the data, reading it from disk if necessary.
:param key: The key of the item to get.
:return: The data corresponding to the key.
"""
if key not in self.data:
if key not in self.file_names:
raise KeyError(f"File {key} not found in directory")
self.read(key)
self.access_times[key] = perf_counter()
return self.data[key]
def maybe_use_tqdm(
iterable: Iterable[Any],
desc: Optional[str]=None
) -> Iterator[Any]:
"""
Uses tqdm if available, otherwise iterates as-is.
:param iterable: The iterable to iterate over.
:param desc: The description to show in the progress bar.
:return: The iterator over the iterable.
"""
try:
import tqdm
yield from tqdm.tqdm(iterable, desc=desc)
except ImportError:
yield from iterable
def mix_audio(audio_to_mix: Sequence[torch.Tensor]) -> torch.Tensor:
"""
Mixes multiple audio arrays together.
"""
mixed_audio = torch.stack(audio_to_mix)
return torch.mean(mixed_audio, dim=0)
def get_seconds_from_timestamp(timestamp: str) -> float:
"""
Converts a timestamp string to seconds.
Expects a timestamp of format `hh:mm:ss.ff`
:param timestamp: The timestamp string to convert.
:return: The number of seconds represented by the timestamp.
"""
parts = timestamp.split(":")
hours = int(parts[0])
minutes = int(parts[1])
seconds = float(parts[2])
return hours * 3600 + minutes * 60 + seconds
def process_session_file(
session_file: str,
wav_data: RotatingAudioDirectoryData,
channel_mode: Literal["split", "mixed"] = "split",
) -> Iterable[Dict[str, Any]]:
"""
Processes a single session file.
:param session_file: The path to the session file to process.
:param wav_data: The audio data to use for the session.
:param channel_mode: The channel mode to use for processing.
:return: An iterator over the processed utterances.
"""
with open(session_file, "r") as f:
session_data = json.load(f)
# Static device distance data from the DiPCo paper (https://arxiv.org/abs/1909.13447)
participant_position_device_distance_map = [
[1600, 2240, 3825, 2900, 1760],
[1990, 2130, 3950, 3100, 1760],
[1820, 1520, 2900, 2030, 2790],
[1300, 1120, 3100, 2520, 2820]
]
# Static map of session to ordered participants
participant_session_positions = [
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31],
[28, 29, 30, 31]
]
for utterance in maybe_use_tqdm(session_data, desc=f"Processing utterances"):
# Grab data from dict
start_times = utterance["start_time"]
end_times = utterance["end_time"]
words = utterance["words"]
gender = utterance["gender"]
nativeness = utterance["nativeness"]
mother_tongue = utterance["mother_tongue"]
session_id_label = utterance["session_id"]
session_id = int(session_id_label[1:]) - 1
participant_id_label = utterance["speaker_id"]
participant_id = int(participant_id_label[1:]) - 1
# Get the participant's position index and device distances
participant_position_index = participant_session_positions[session_id].index(participant_id) # 0 - 3
participant_device_distances = participant_position_device_distance_map[participant_position_index] # 5 distances
speaker_metadata = {
"transcription": words,
"participant_id": participant_id_label,
"session_id": session_id_label,
"gender": gender,
"nativeness": nativeness,
"mother_tongue": mother_tongue,
}
# Each key is either "close-talk" or U01, U02, etc.
# Go through each and get the timestamp into the corresponding wav file
for time_key in start_times.keys():
# Get the start and end times in seconds and frames
start_timestamp = start_times[time_key]
start_time_s = get_seconds_from_timestamp(start_timestamp)
start_frame = int(start_time_s * wav_data.sample_rate)
# Get the end time in seconds and frames
end_timestamp = end_times[time_key]
end_time_s = get_seconds_from_timestamp(end_timestamp)
end_frame = int(end_time_s * wav_data.sample_rate)
# Create a metadata dict for the utterance to use later
utterance_metadata = {
**speaker_metadata,
**{
"start_timestamp": start_timestamp,
"start_time_s": start_time_s,
"start_frame": start_frame,
"end_timestamp": end_timestamp,
"end_time_s": end_time_s,
"end_frame": end_frame,
"duration_s": end_time_s - start_time_s,
"duration_frames": end_frame - start_frame,
},
}
if time_key == "close-talk":
# Use participant's close-talk audio
device_metadata = {
"device_type": "close-talk",
"device_id": participant_id_label,
"device_channel": 0,
"device_distance_mm": 0,
}
wav_file_name = f"{session_id_label}_{participant_id_label}.wav"
audio_array = wav_data[wav_file_name][start_frame:end_frame]
yield {
"audio": {
"array": audio_array,
"path": wav_file_name,
"sampling_rate": wav_data.sample_rate,
},
**device_metadata,
**utterance_metadata,
}
else:
# Time key will be U01, U02, etc.
device_id = int(time_key[1:]) - 1
# Use the far-field audio array of 7 microphones
device_metadata = {
"device_type": "far-field",
"device_id": time_key,
"device_distance_mm": participant_device_distances[device_id],
}
audio_to_mix = []
# Iterate over each channe
for channel in range(7):
wav_file_name = f"{session_id_label}_{time_key}.CH{channel+1}.wav"
audio_array = wav_data[wav_file_name][start_frame:end_frame]
if channel_mode == "split":
# If using split mode, yield each channel separately
yield {
"audio": {
"array": audio_array,
"path": wav_file_name,
"sampling_rate": wav_data.sample_rate,
},
"device_channel": channel+1,
**device_metadata,
**utterance_metadata,
}
else:
# Otherwise, add to the mix
audio_to_mix.append(audio_array)
if channel_mode == "mixed":
# If using mixed mode, mix the audio channels together
audio_array = mix_audio(audio_to_mix)
yield {
"audio": {
"array": audio_array,
"sampling_rate": wav_data.sample_rate,
},
"device_channel": 0,
**device_metadata,
**utterance_metadata,
}
def process_split(
dipco_path: str,
dipco_split: str,
channel_mode: Literal["split", "mixed"] = "split",
max_memory_bytes: int = 16*1024**3, # 16GB
) -> Iterable[Dict[str, Any]]:
"""
Processes a split of the DiPCo dataset, iterating through all session files.
:param dipco_path: The path to the DiPCo dataset.
:param dipco_split: The split of the DiPCo dataset to process.
:param channel_mode: The channel mode to use for processing.
:param max_memory_bytes: The maximum memory to use for audio data.
:return: An iterator over the processed utterances.
:see: process_session_file
"""
dipco_path = os.path.abspath(dipco_path)
wav_dir = os.path.join(dipco_path, "audio", dipco_split)
wav_data = RotatingAudioDirectoryData(wav_dir, max_size=max_memory_bytes)
transcriptions_dir = os.path.join(dipco_path, "transcriptions", dipco_split)
session_filenames = [
f for f in os.listdir(transcriptions_dir)
if f.endswith(".json")
and not f.startswith(".")
]
for session_filename in maybe_use_tqdm(session_filenames, desc=f"Processing session data"):
num_yielded = 0
for utterance in process_session_file(
os.path.join(transcriptions_dir, session_filename),
wav_data,
channel_mode=channel_mode,
):
num_yielded += 1
yield utterance
print(f"Parsed {num_yielded} utterances from {session_filename}")
del wav_data
gc.collect()
def get_split_dataset(
dipco_path: str,
dipco_split: str,
channel_mode: Literal["split", "mixed"] = "split",
) -> Dataset:
"""
Gets a split of the DiPCo dataset as a Dataset object.
:param dipco_path: The path to the DiPCo dataset.
:param dipco_split: The split of the DiPCo dataset to process.
:param channel_mode: The channel mode to use for processing.
:return: The processed dataset.
:see: process_split
"""
gen_kwargs = {
"dipco_path": dipco_path,
"dipco_split": dipco_split,
"channel_mode": channel_mode,
}
return Dataset.from_generator(
process_split,
gen_kwargs=gen_kwargs,
features=Features({
"audio": Audio(),
"start_timestamp": Value(dtype="string"),
"start_time_s": Value(dtype="float32"),
"start_frame": Value(dtype="uint64"),
"end_timestamp": Value(dtype="string"),
"end_time_s": Value(dtype="float32"),
"end_frame": Value(dtype="uint64"),
"duration_s": Value(dtype="float32"),
"duration_frames": Value(dtype="uint64"),
"transcription": Value(dtype="string"),
"mother_tongue": Value(dtype="string"),
"participant_id": Value(dtype="string"),
"session_id": Value(dtype="string"),
"device_id": Value(dtype="string"),
"device_channel": Value(dtype="uint8"),
"device_distance_mm": Value(dtype="uint16"),
"device_type": ClassLabel(
num_classes=2,
names=["close-talk", "far-field"]
),
"gender": ClassLabel(
num_classes=2,
names=["female", "male"]
),
"nativeness": ClassLabel(
num_classes=2,
names=["native", "non-native"]
),
})
)
def synchronize_split(
dipco_path: str,
dipco_split: str,
hub_path: str,
hub_split: str,
channel_mode: Literal["split", "mixed"] = "split",
set_default: bool = False,
) -> None:
"""
Synchronizes a split of the DiPCo dataset to hub.
:param dipco_path: The path to the DiPCo dataset.
:param dipco_split: The split of the DiPCo dataset to process.
:param hub_path: The path to the hub dataset.
:param hub_split: The split of the hub dataset to push to.
:param channel_mode: The channel mode to use for processing.
:param set_default: Whether to set the split as the default.
:see: get_split_dataset
"""
dataset = get_split_dataset(
dipco_path=dipco_path,
dipco_split=dipco_split,
channel_mode=channel_mode,
)
dataset.push_to_hub(
hub_path,
config_name=f"{channel_mode}-channel",
split=hub_split,
set_default=set_default,
)
# Helper classes and methods done, this is the main process when running the script
if __name__ == "__main__":
# If you want to run this script, you can configure the following variables
# to your device and repository settings.
dipco_path = "./Dipco" # Extracted Dipco dataset
hub_path = "benjamin-paine/dinner-party-corpus" # username/repo on huggingface.co
channel_modes = ["split", "mixed"] # channel modes to process, first becomes default
split_maps = [("dev", "train"), ("eval", "test")] # Map dipco splits to hub splits
# Done configuring, now run the conversion
for i, channel_mode in enumerate(channel_modes):
for j, (dipco_split, hub_split) in enumerate(split_maps):
synchronize_split(
dipco_path=dipco_path,
dipco_split=dipco_split,
hub_path=hub_path,
hub_split=hub_split,
channel_mode=channel_mode,
set_default=i==0 and j==0,
)