|
""" |
|
Script to translate given single english audio file to corresponding hindi text |
|
Usage : python s2t_en2hi.py <audio_file_path> <averaged_checkpoints_file_path> |
|
""" |
|
|
|
|
|
|
|
import gradio as gr |
|
import sys |
|
import os |
|
import subprocess |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
def install_fairseq(): |
|
try: |
|
|
|
subprocess.check_call(["pip", "install", "fairseq"]) |
|
subprocess.check_call(["pip", "install", "sentencepiece"]) |
|
return "fairseq successfully installed!" |
|
except subprocess.CalledProcessError as e: |
|
return f"An error occurred while installing fairseq: {str(e)}" |
|
|
|
huggingface_model_dir = snapshot_download(repo_id="balaramas/en_hi_s2t") |
|
print(huggingface_model_dir) |
|
|
|
os.system("cd fairseq_mustc_single_inference") |
|
|
|
|
|
def run_my_code(input_text): |
|
|
|
hi_wav = input_text |
|
en2hi_model_checkpoint = "st_avg_last_10_checkpoints.pt" |
|
os.system(f"cp {hi_wav} ./MUSTC_ROOT/en-hi/data/tst-COMMON/wav/test.wav") |
|
|
|
print("------Starting data prepration...") |
|
subprocess.run(["python", "prep_mustc_data_hindi_single.py", "--data-root", "MUSTC_ROOT/", "--task", "st", "--vocab-type", "unigram", "--vocab-size", "8000"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) |
|
|
|
print("------Performing translation...") |
|
translation_result = subprocess.run(["fairseq-generate", "./MUSTC_ROOT/en-hi/", "--config-yaml", "config_st.yaml", "--gen-subset", "tst-COMMON_st", "--task", "speech_to_text", "--path", en2hi_model_checkpoint, "--max-tokens", "50000", "--beam", "5", "--scoring", "sacrebleu"], capture_output=True, text=True) |
|
translation_result_text = translation_result.stdout |
|
lines = translation_result_text.split("\n") |
|
output_text="" |
|
print("\n\n------Translation results are:") |
|
for i in lines: |
|
if (i.startswith("D-0")): |
|
print(i.split("\t")[2]) |
|
output_text=i.split("\t")[2] |
|
break |
|
|
|
os.system("rm ./MUSTC_ROOT/en-hi/data/tst-COMMON/wav/test.wav") |
|
return output_text |
|
|
|
install_fairseq() |
|
|
|
|
|
input_textbox = gr.inputs.Textbox(label="Input Text") |
|
output_textbox = gr.outputs.Textbox(label="Output Text") |
|
|
|
|
|
iface = gr.Interface(fn=run_my_code, inputs=input_textbox, outputs=output_textbox, title="My Code Runner") |
|
|
|
|
|
iface.launch() |