|
import os |
|
|
|
from .base import BaseModel |
|
from ..smp import * |
|
from ..dataset import DATASET_TYPE |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
import torch |
|
import json |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
def load_model_tokenizer(checkpoint_path): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
checkpoint_path, trust_remote_code=True, |
|
) |
|
device_map = 'auto' |
|
model = AutoModelForCausalLM.from_pretrained( |
|
checkpoint_path, |
|
device_map=device_map, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
return model, tokenizer |
|
|
|
|
|
class Baichuan(BaseModel): |
|
INSTALL_REQ = False |
|
INTERLEAVE = False |
|
|
|
def __init__(self, sft=True, model_path=None): |
|
assert model_path is not None |
|
self.device = "cuda" |
|
self.model_path = model_path |
|
|
|
self.model, self.tokenizer = load_model_tokenizer(model_path) |
|
self.model.bind_processor(self.tokenizer, training=False) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
self.use_reserve_qa_prompt = sft |
|
self.reserve_qa_start_prompt = "<C_Q>" |
|
self.reserve_qa_end_prompt = "<C_A>" |
|
|
|
self.task_prompt="" |
|
self.options_system_prompt = ('Carefully read the following question and select the letter corresponding ' |
|
'to the correct answer. Highlight the applicable choices without giving ' |
|
'explanations. ') |
|
self.wo_options_system_prompt = 'Carefully read the following question Answer the question directly. ' |
|
self.detail_system_prompt = 'Answer this question in detail and step by step. ' |
|
self.vqa_prompt = 'Answer the question using a single word or phrase. ' |
|
|
|
|
|
def generate_inner(self, message, dataset=None): |
|
image_str, question = '', '' |
|
for s in message: |
|
if s['type'] == 'image': |
|
if len(s["value"].split(".")[-1]) > 2: |
|
image_dict = {"local": s["value"]} |
|
else: |
|
image_dict = {"base64": s["value"]} |
|
image_str += f"<img_start_baichuan>{json.dumps(image_dict)}<img_end_baichuan>\n" |
|
elif s['type'] == 'text': |
|
question += s['value'] |
|
|
|
|
|
if self.use_reserve_qa_prompt: |
|
prompt = "{}{}{}{}{}".format(self.reserve_qa_start_prompt, image_str, question, self.task_prompt, self.reserve_qa_end_prompt) |
|
else: |
|
prompt = "{}{}{}".format(image_str, question, self.task_prompt) |
|
|
|
print("****************************** prompt ******************************") |
|
print(prompt) |
|
print("********************************************************************") |
|
|
|
with torch.inference_mode(): |
|
ret = self.model.processor(prompt) |
|
input_ids = ret.input_ids |
|
try: |
|
ret = self.model.generate( |
|
inputs=torch.LongTensor([input_ids]).cuda(), |
|
images=[torch.tensor(img, dtype=torch.float32).cuda() for img in images] if ret.images is not None else None, |
|
patch_nums=ret.patch_nums, |
|
images_grid=ret.images_grid, |
|
max_new_tokens=1024, do_sample=False, top_k=5, top_p=0.85, temperature=0, |
|
num_return_sequences=1, repetition_penalty=1.05, |
|
use_cache=False |
|
) |
|
ret = self.tokenizer.batch_decode(ret[:, torch.LongTensor([input_ids]).to(self.device).shape[1]:], skip_special_tokens=True)[0].strip() |
|
except Exception as e: |
|
print(e) |
|
ret = "" |
|
|
|
response = ret |
|
|
|
print("=========================================== response ===========================================") |
|
print(f"\033[32m{response}\033[0m") |
|
print("================================================================================================") |
|
return response |
|
|
|
|
|
def use_custom_prompt(self, dataset): |
|
if dataset is not None and listinstr(['M3GIA'], dataset): |
|
return False |
|
if listinstr(['MCQ', 'VQA'], DATASET_TYPE(dataset)): |
|
return True |
|
elif dataset is not None and listinstr(['HallusionBench'], dataset): |
|
return True |
|
return False |
|
|
|
|
|
def build_prompt(self, line, dataset=None): |
|
if isinstance(line, int): |
|
line = self.data.iloc[line] |
|
|
|
tgt_path = self.dump_image(line, dataset) |
|
system_prompt = '' |
|
|
|
question = line['question'] |
|
if DATASET_TYPE(dataset) == 'MCQ': |
|
options = { |
|
cand: line[cand] |
|
for cand in string.ascii_uppercase |
|
if cand in line and not pd.isna(line[cand]) |
|
} |
|
options_prompt = 'Options:\n' |
|
for key, item in options.items(): |
|
options_prompt += f'{key}. {item}\n' |
|
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None |
|
prompt = '' |
|
if hint is not None: |
|
prompt += f'Hint: {hint}\n' |
|
prompt += f'Question: {question}\n' |
|
if len(options): |
|
prompt += options_prompt |
|
if 'MMBench' in dataset: |
|
prompt += 'Please select the correct answer from the options above. \n' |
|
else: |
|
system_prompt = self.options_system_prompt + '\nPlease just indicate your choice.' |
|
else: |
|
system_prompt = self.wo_options_system_prompt |
|
if 'MMMU' in dataset: |
|
prompt = system_prompt + '\n' + prompt |
|
system_prompt = '' |
|
elif dataset is not None and listinstr(['HallusionBench'], dataset): |
|
question = line['question'] + ' Yes or No?' |
|
prompt = question |
|
elif dataset is not None and listinstr(['MME'], dataset): |
|
question = line['question'] + ' Yes or No?' |
|
prompt = question |
|
elif dataset is not None and listinstr(['OCRBench'], dataset): |
|
system_prompt = self.vqa_prompt |
|
question = line['question'] |
|
prompt = question |
|
elif DATASET_TYPE(dataset) == 'VQA': |
|
if listinstr(['LLaVABench', 'MMLongBench_DOC'], dataset): |
|
system_prompt = '' |
|
prompt = question |
|
elif listinstr(['MMVet'], dataset): |
|
system_prompt = self.detail_system_prompt |
|
prompt = question |
|
elif listinstr(['ChartQA'], dataset): |
|
system_prompt = 'Please answer the question using a single word. ' |
|
prompt = question |
|
else: |
|
system_prompt = self.vqa_prompt |
|
prompt = question |
|
|
|
msgs = [] |
|
if system_prompt: |
|
msgs.append(dict(type='text', value=system_prompt)) |
|
if isinstance(tgt_path, list): |
|
msgs.extend([dict(type='image', value=p) for p in tgt_path]) |
|
else: |
|
msgs = [dict(type='image', value=tgt_path)] |
|
msgs.append(dict(type='text', value=prompt)) |
|
|
|
return msgs |
|
|