File size: 49,198 Bytes
1fc662a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
import warnings
import json
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
import pandas as pd

MMMB_URLS = {
    'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
    'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
    'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
    'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
    'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
    'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
}

MTL_MMBench_URLS = {
    'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
    'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
    'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
    'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
    'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
    'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
}

MMMB_MD5 = {
    'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
    'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
    'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
}

MTL_MMBench_MD5 = {
    'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
    'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
    'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
}


class ImageMCQDataset(ImageBaseDataset):

    TYPE = 'MCQ'

    DATASET_URL = {
        # MMBench v1.0
        'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN.tsv',
        'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN.tsv',
        'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN.tsv',
        'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN.tsv',
        'MMBench': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench.tsv',  # Internal
        'MMBench_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN.tsv',  # Internal
        # MMBench v1.1
        'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN_V11.tsv',
        'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN_V11.tsv',
        'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN_V11.tsv',
        'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN_V11.tsv',
        'MMBench_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_V11.tsv',  # Internal
        'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN_V11.tsv',  # Internal
        # SEEDBench Series
        'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench_IMG.tsv',
        'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
        'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench2_Plus.tsv',
        # ScienceQA Series
        'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_VAL.tsv',
        'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_TEST.tsv',
        # MMT-Bench
        'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL_MI.tsv',
        'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL.tsv',
        'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL_MI.tsv',
        'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL.tsv',
        # AesBench
        'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
        'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
        # Q-Bench1
        'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
        'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
        # A-Bench
        'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
        'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
        # R-Bench
        'R-Bench-Dis': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-dis.tsv',
        'R-Bench-Ref': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-ref.tsv',
        # Other Benchmarks
        'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
        'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
        'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
        'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
        'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
        'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
        'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
        'TaskMeAnything_v1_imageqa_random': (
            'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
            'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
        ),
        'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv',
        'WorldMedQA-V': 'https://opencompass.openxlab.space/utils/VLMEval/WorldMedQA-V.tsv',
        'VisOnlyQA-VLMEvalKit': (
            'https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real/'
            'resolve/main/visonlyqa_vlmevalkit.tsv'
        ),
        '3DSRBench': (
            'https://huggingface.co/datasets/ccvl/3DSRBench/'
            'resolve/main/3dsrbench_v1_vlmevalkit_circular.tsv'
        ),
    }

    DATASET_MD5 = {
        # MMBench v1.0
        'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
        'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
        'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
        'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
        'MMBench': '4115aea3383f3dd0083be6a633e0f820',  # Internal Only
        'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee',    # Internal Only
        # MMBench v1.1
        'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
        'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
        'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
        'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
        'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c',  # Internal Only
        'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25',    # Internal Only
        # SEEDBench
        'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
        'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
        'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
        # ScienceQA
        'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
        'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
        # MMT-Bench
        'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
        'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
        'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
        'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
        # AesBench
        'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
        'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
        # Q-Bench1
        'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
        'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
        # A-Bench
        'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
        'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
        # R-Bench
        'R-Bench-Dis': 'd6e961dbfc43350688af2560226830b4',
        'R-Bench-Ref': '270c1cb555acb523f3fdb178ed57021d',
        # Other Benchmarks
        'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
        'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
        'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
        'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
        'RealWorldQA': '4de008f55dc4fd008ca9e15321dc44b7',
        'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
        'BLINK': '3b6649b6a662184ea046908e5506260e',
        'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889',
        'WorldMedQA-V': '441e63875e30c87f5750528b57b41285',
        "VisOnlyQA-VLMEvalKit": 'cf460a31d2acb8d3a7cecd0e69298bfa',
        '3DSRBench': '13a99f33164dc1b9faf0e8b8b01fd6f2',
    }

    DATASET_URL.update(MMMB_URLS)
    DATASET_URL.update(MTL_MMBench_URLS)
    DATASET_MD5.update(MMMB_MD5)
    DATASET_MD5.update(MTL_MMBench_MD5)

    def build_prompt(self, line):

        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        question = line['question']
        options = {
            cand: line[cand]
            for cand in string.ascii_uppercase
            if cand in line and not pd.isna(line[cand])
        }
        options_prompt = 'Options:\n'
        for key, item in options.items():
            options_prompt += f'{key}. {item}\n'
        hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
        prompt = ''
        if hint is not None:
            prompt += f'Hint: {hint}\n'
        prompt += f'Question: {question}\n'
        if len(options):
            prompt += options_prompt
            prompt += 'Please select the correct answer from the options above. \n'

        msgs = []
        if isinstance(tgt_path, list):
            msgs.extend([dict(type='image', value=p) for p in tgt_path])
        else:
            msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=prompt))

        return msgs

    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
        # assert dataset is not None
        dataset_map = {
            'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
            'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
        }
        dataset = self.dataset_name
        if dataset in dataset_map:
            dataset = dataset_map[dataset]
        nproc = judge_kwargs.pop('nproc', 4)

        circular = False
        if listinstr(['mmbench', 'ccbench'], dataset.lower()):
            data = load(eval_file)
            data['index'] = [int(x) for x in data['index']]
            dump(data, eval_file)
            circular = True

        suffix = eval_file.split('.')[-1]
        model = judge_kwargs.get('model', 'exact_matching')
        assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
        name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
        name_str = name_str_map[model] if model in name_str_map else model

        if model == 'exact_matching':
            model = None
        elif gpt_key_set():
            model = build_judge(**judge_kwargs)
            if not model.working():
                warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
                warnings.warn(DEBUG_MESSAGE)
                model = None
        else:
            warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
            model = None

        result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')

        data = load(eval_file)
        data = data.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        # If not choice label, then use lower case
        for k in data.keys():
            data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)

        meta = self.data
        meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
        data_map = {x: y for x, y in zip(data['index'], data['question'])}
        for k in data_map:
            assert k in meta_q_map, (
                f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
            )

        if circular:
            data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
        else:
            data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)

        # load split
        dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
        data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))

        # May have different report acc functions for different datasets
        if 'MMT' in dataset:
            acc = report_acc_MMT(data)
        else:
            acc = report_acc(data)

        score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
        dump(acc, score_file)

        if dataset == 'AesBench_VAL':
            warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \

                           please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \

                           larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
        if dataset == 'VisOnlyQA-VLMEvalKit':
            warnings.warn('Note that the results on VisOnlyQA-VLMEvalKit are different from the results on \

                           the original VisOnlyQA. VisOnlyQA-VLMEvalKit does not include the \

                           chemistry__shape_multi split and uses a different evaluation prompt. Please \

                           explicitly specify the version of the dataset when you report results.')

        return acc


class OpenMMMedical(ImageMCQDataset):
    @classmethod
    def supported_datasets(cls):
        return ['OpenMMMedical']

    def load_data(self, dataset='OpenMMMedical'):
        image_folder = "/your/path/to/OpenMM_Medical"
        def generate_tsv(pth):
            import csv
            from pathlib import Path
            tsv_file_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')

            if os.path.exists(tsv_file_path):
                print(f'{tsv_file_path} already exists.')
                return

            path = Path(pth)
            json_files = [str(f) for f in path.rglob('*.json')]
            fieldnames = ["index", "dataset", "question_id", "question_type", "question", "A", "B", "C", "D", "E", "answer", "image_path"]
            index = 0
            with open(tsv_file_path, 'w', encoding='utf-8', newline='') as tsv_file:
                writer = csv.DictWriter(tsv_file, fieldnames=fieldnames, delimiter='\t')
                writer.writeheader()
                for json_file in json_files:
                    data_name = json_file.split('/')[-1].split('.')[0]
                    with open(json_file, 'r', encoding='utf-8') as f:
                        data = json.load(f)
                        for row in data:
                            line = {}
                            line['index'] = index
                            line['dataset'] = row['dataset']
                            line['question_id'] = row['question_id']
                            line['question_type'] = row['question_type']
                            line['question'] = row['question']
                            choices_letter = ["A", "B", "C", "D", "E"]
                            for i in range(len(choices_letter)):
                                if f"option_{choices_letter[i]}" in row:
                                    line[choices_letter[i]] = row[f"option_{choices_letter[i]}"]
                                    if row[f"option_{choices_letter[i]}"] == row['gt_answer']:
                                        line['answer'] = choices_letter[i]
                                else:
                                    break
                            line['image_path'] = os.path.join(image_folder, row['image_path'])
                            index += 1
                            writer.writerow(line)
            print(f'TSV file saved to {tsv_file_path}')

        generate_tsv(image_folder)
        update_flag = True

        data_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
        if file_size(data_path, 'GB') > 1:
            local_path = data_path.replace('.tsv', '_local.tsv')
            if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
                from vlmeval.tools import LOCALIZE
                LOCALIZE(data_path, local_path)
            data_path = local_path
        return load(data_path)

    # Given one data record, return the built prompt (a multi-modal message), can override
    def build_prompt(self, line):
        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        question = line['question']
        options = {
            cand: line[cand]
            for cand in string.ascii_uppercase
            if cand in line and not pd.isna(line[cand])
        }
        options_prompt = 'Options:\n'
        for key, item in options.items():
            options_prompt += f'{key}. {item}\n'
        hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
        prompt = ''
        if hint is not None:
            prompt += f'Hint: {hint}\n'
        prompt += f'Question: {question}\n'
        prompt += options_prompt
        prompt += "Answer with the option's letter from the given choices directly.\n"
        # prompt += "Please select the correct answer from the options above. \n"

        msgs = []
        if tgt_path:
            if isinstance(tgt_path, list):
                msgs.extend([dict(type='image', value=p) for p in tgt_path])
            else:
                msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=prompt))
        return msgs

    def report_acc_by_groups(self, df, group_column):
        res = defaultdict(list)

        # Check for the 'split' column
        if 'split' in df:
            splits = list(set(df['split']))
            res['split'] = splits
        else:
            df['split'] = ['none'] * len(df)
            res['split'] = ['none']

        res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]

        if group_column not in df:
            raise ValueError(f"Column '{group_column}' not found in dataframe.")  # noqa: E713

        abilities = list(set(df[group_column]))
        abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
        abilities.sort()

        for ab in abilities:
            ab_name = ab
            sub_df = df[df[group_column] == ab]
            res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]

        return pd.DataFrame(res)

    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.multiple_choice import report_acc, mcq_vanilla_eval
        nproc = judge_kwargs.pop('nproc', 4)

        suffix = eval_file.split('.')[-1]
        model = judge_kwargs.get('model', 'exact_matching')
        assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125', 'gpt-4o']
        name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4', 'gpt-4o': 'gpt4o'}
        name_str = name_str_map[model] if model in name_str_map else model

        if model == 'exact_matching':
            model = None
        elif gpt_key_set():
            model = build_judge(**judge_kwargs)
            if not model.working():
                warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
                warnings.warn(DEBUG_MESSAGE)
                model = None
        else:
            warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
            model = None

        result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')

        data = load(eval_file)
        data = data.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        # If not choice label, then use lower case
        for k in data.keys():
            data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)

        meta = self.data
        meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
        data_map = {x: y for x, y in zip(data['index'], data['question'])}
        for k in data_map:
            assert k in meta_q_map, (
                f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
            )

        data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)

        # load split
        dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
        data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))

        acc = report_acc(data)

        for group_col in ['dataset']:
            acc_grouped = self.report_acc_by_groups(data, group_col)
            score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
            dump(acc_grouped, score_file_grouped)

        return acc
    

class MMMUDataset(ImageMCQDataset):

    DATASET_URL = {
        'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
        'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
    }

    DATASET_MD5 = {
        'MMMU_DEV_VAL': '585e8ad75e73f75dcad265dfd0417d64',
        'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
    }

    @staticmethod
    def split_MMMU(msgs):
        text, images = None, []
        for s in msgs:
            if s['type'] == 'image':
                images.append(s['value'])
            elif s['type'] == 'text':
                assert text is None
                text = s['value']
        text_segs = text.split('<image ')
        if len(text_segs) == 1:
            return msgs

        segs = [dict(type='text', value=text_segs[0])]
        for i, seg in enumerate(text_segs):
            if i == 0:
                continue
            assert istype(seg[0], int) and seg[1] == '>'
            image_idx = int(seg[0]) - 1
            segs.append(dict(type='image', value=images[image_idx]))
            segs.append(dict(type='text', value=seg[2:]))
        return segs

    def build_prompt(self, line):
        msgs = super().build_prompt(line)
        msgs = self.split_MMMU(msgs)
        return msgs


class MUIRDataset(ImageMCQDataset):

    DATASET_URL = {
        'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
    }

    DATASET_MD5 = {
        'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
    }

    @staticmethod
    def split_MUIR(msgs):
        text, images = None, []

        # Separate images and text from msgs
        for s in msgs:
            if s['type'] == 'image':
                images.append(s['value'])
            elif s['type'] == 'text':
                assert text is None  # Ensure only one text entry is expected
                text = s['value']

        # Split text by <image> tags
        text_segs = text.split('<image>')

        # Initialize the segments list
        segs = []

        # Iterate through the text segments and images
        for i, seg in enumerate(text_segs):
            # Append the image if this is not the first segment and there are still images left
            if i > 0 and i - 1 < len(images):
                segs.append(dict(type='image', value=images[i - 1]))
            # Append the text segment (if it's non-empty)
            if len(seg) > 0:
                segs.append(dict(type='text', value=seg))

        return segs

    def build_prompt(self, line):

        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        question = line['question']
        options = {
            cand: line[cand]
            for cand in string.ascii_uppercase
            if cand in line and not pd.isna(line[cand])
        }
        # options_prompt = ''
        options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
        # for key, item in options.items():
        #     options_prompt += f'{key}. {item}\n'

        prompt = ''

        prompt += f'{question}\n'
        if len(options):
            prompt += options_prompt
            prompt += "\nAnswer with the option's letter from the given choices directly."

        msgs = []
        if isinstance(tgt_path, list):
            msgs.extend([dict(type='image', value=p) for p in tgt_path])
        else:
            msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=prompt))

        msgs = self.split_MUIR(msgs)
        return msgs


class GMAIMMBenchDataset(ImageMCQDataset):

    DATASET_URL = {
        'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv',
        'GMAI_mm_bench_TEST_part_1': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_1.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_2': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_2.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_3': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_3.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_4': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_4.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_5': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_5.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_6': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_6.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_7': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_7.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_8': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_8.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_9': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_9.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_10': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_10.tsv',  # noqa: E501
        'GMAI_mm_bench_TEST_part_11': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_11.tsv',  # noqa: E501
    }

    DATASET_MD5 = {
        'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324',
        'GMAI_mm_bench_TEST_part_1': '900d735231230a63f4ed45665c078ef4',
        'GMAI_mm_bench_TEST_part_2': '1b27ab621386945d7e4a765ad2d22b0e',
        'GMAI_mm_bench_TEST_part_3': '44bdc2b6267dd505d529b8cad06f0fb2',
        'GMAI_mm_bench_TEST_part_4': '5a04a04fcac9f1466709f242fdb80acb',
        'GMAI_mm_bench_TEST_part_5': 'c70baf8909eda9af0ddeab275c721336',
        'GMAI_mm_bench_TEST_part_6': '825abc39596b644dead9350d0cfa3b96',
        'GMAI_mm_bench_TEST_part_7': 'defb8aed2fb77365a76b6b9abd6a2701',
        'GMAI_mm_bench_TEST_part_8': 'ff490d60b85f2bb0abb67a435b298c65',
        'GMAI_mm_bench_TEST_part_9': 'ff67c86f40da93b09139ac1d1ba5dc6b',
        'GMAI_mm_bench_TEST_part_10': '3dae94627b9ac0fe00180d4780fbf6dc',
        'GMAI_mm_bench_TEST_part_11': 'd08dc813f0eb6bbab63cae2a9d113c4b',
    }

    @classmethod
    def supported_datasets(cls):
        return ['GMAI-MMBench_VAL', 'GMAI-MMBench_TEST']

    def load_data(self, dataset):
        if dataset == 'GMAI-MMBench_VAL':
            data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
            if file_size(data_path, 'GB') > 1:
                local_path = data_path.replace('.tsv', '_local.tsv')
                if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
                    from ..tools import LOCALIZE
                    LOCALIZE(data_path, local_path)
                data_path = local_path
            return load(data_path)
        elif dataset == 'GMAI-MMBench_TEST':
            dfs = []
            for part_num in range(1, 12):
                part_name = f'GMAI_mm_bench_TEST_part_{part_num}'
                url = self.DATASET_URL[part_name]
                file_md5 = self.DATASET_MD5.get(part_name)
                tsv_path = osp.join(LMUDataRoot(), f'{part_name}.tsv')
                if not osp.exists(tsv_path) or (file_md5 and md5(tsv_path) != file_md5):
                    download_file(url, filename=tsv_path)
                local_path = tsv_path.replace('.tsv', '_local.tsv')
                if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
                    from ..tools import LOCALIZE
                    LOCALIZE(tsv_path, local_path)
                tsv_path = local_path
                # 加载数据
                df = load(tsv_path)
                dfs.append(df)
            # 合并所有数据
            data = pd.concat(dfs, ignore_index=True)
            return data
        else:
            raise ValueError(f"未知的数据集:{dataset}")

    def report_acc_by_groups(self, df, group_column):
        res = defaultdict(list)

        # Check for the 'split' column
        if 'split' in df:
            splits = list(set(df['split']))
            res['split'] = splits
        else:
            df['split'] = ['none'] * len(df)
            res['split'] = ['none']

        res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]

        if group_column not in df:
            raise ValueError(f"Column '{group_column}' not found in dataframe.")  # noqa: E713

        abilities = list(set(df[group_column]))
        abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
        abilities.sort()

        for ab in abilities:
            ab_name = ab
            sub_df = df[df[group_column] == ab]
            res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]

        return pd.DataFrame(res)

    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.multiple_choice import report_acc, mcq_vanilla_eval
        nproc = judge_kwargs.pop('nproc', 4)

        suffix = eval_file.split('.')[-1]
        model = judge_kwargs.get('model', 'exact_matching')
        assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
        name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
        name_str = name_str_map[model] if model in name_str_map else model

        if model == 'exact_matching':
            model = None
        elif gpt_key_set():
            model = build_judge(**judge_kwargs)
            if not model.working():
                warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
                warnings.warn(DEBUG_MESSAGE)
                model = None
        else:
            warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
            model = None

        result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')

        data = load(eval_file)
        data = data.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        # If not choice label, then use lower case
        for k in data.keys():
            data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)

        meta = self.data
        meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
        data_map = {x: y for x, y in zip(data['index'], data['question'])}
        for k in data_map:
            assert k in meta_q_map, (
                f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
            )

        data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)

        # load split
        dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
        data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))

        acc = report_acc(data)

        for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
            acc_grouped = self.report_acc_by_groups(data, group_col)
            score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
            dump(acc_grouped, score_file_grouped)

        return acc


class MMERealWorld(ImageMCQDataset):

    TYPE = 'MMERealWorld'

    DATASET_MD5 = {
        'MME-RealWorld': '271c33ec814c39533c467ec6fb8a6f36',
        'MME-RealWorld-Lite': '4c17057d7d3b6c4a0d4397c3dae0881c',
        'MME-RealWorld-CN': 'daaa763d52a760a38606d5dedb3fe444',
    }
    SYS = {
        'MME-RealWorld': (
            'Select the best answer to the above multiple-choice question based on the image. '
            'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
            'The best answer is:'
        ),
        'MME-RealWorld-Lite': (
            'Select the best answer to the above multiple-choice question based on the image. '
            'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
            'The best answer is:'
        ),
        'MME-RealWorld-CN': (
            '根据图像选择上述多项选择题的最佳答案。只需回答正确选项的字母(A, B, C, D 或 E)。\n'
            '最佳答案为:'
        ),
    }

    @classmethod
    def supported_datasets(cls):
        return ['MME-RealWorld', 'MME-RealWorld-CN', 'MME-RealWorld-Lite',]

    def load_data(

        self, dataset="MME-RealWorld", repo_id="yifanzhang114/MME-RealWorld-Base64"

    ):

        def check_integrity(pth):
            data_file = osp.join(pth, f"{dataset}.tsv")

            if not os.path.exists(data_file):
                return False

            if md5(data_file) != self.DATASET_MD5[dataset]:
                return False
            return True

        def generate_tsv(pth):
            tsv_file = os.path.join(pth, f"{dataset}.tsv")

            if os.path.exists(tsv_file):
                print(f"{tsv_file} already exists.")
                return

            json_dir = os.path.join(pth, dataset)
            json_files = [f for f in os.listdir(json_dir) if f.endswith(".json")]

            data_list = []
            for json_file in json_files:
                with open(os.path.join(json_dir, json_file), "r") as f:
                    data = json.load(f)
                    for item in tqdm(data):
                        choice_prompt = (
                            "The choices are listed below:\n"
                            if dataset in ["MME-RealWorld", "MME-RealWorld-Lite"]
                            else "选项如下所示:\n"
                        )
                        data_list.append(
                            {
                                "index": item["index"],
                                "image": item["image"],
                                "question": item["question"],
                                "multi-choice options": choice_prompt
                                + "\n".join(item["multi-choice options"]),
                                "A": item["multi-choice options"][0][4:],
                                "B": item["multi-choice options"][1][4:],
                                "C": item["multi-choice options"][2][4:],
                                "D": item["multi-choice options"][3][4:],
                                "E": item["multi-choice options"][4][4:],
                                "answer": item["answer"],
                                "category": item["category"],
                                "l2-category": item["l2-category"],
                            }
                        )
            df = pd.DataFrame(data_list)
            df.to_csv(tsv_file, sep="\t", index=False)
            print(f"TSV file saved to {tsv_file}")

        # Check if dataset is cached and has integrity
        if dataset == "MME-RealWorld-Lite":
            url = 'https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-Base64/resolve/main/mme_realworld_lite.tsv'  # noqa: E501
            file_md5 = (
                self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
            )
            datas = self.prepare_tsv(url, file_md5)
            choice_prompt = "The choices are listed below:\n"
            for index, item in datas.iterrows():
                options = eval(item["multi-choice options"])
                datas.loc[index, "multi-choice options"] = choice_prompt + "\n".join(
                    options
                )
                datas.loc[index, "A"] = options[0][4:]
                datas.loc[index, "B"] = options[1][4:]
                datas.loc[index, "C"] = options[2][4:]
                datas.loc[index, "D"] = options[3][4:]
                datas.loc[index, "E"] = options[4][4:]
            return datas

        update_flag = False
        cache_path = get_cache_path(repo_id)
        if cache_path is not None and check_integrity(cache_path):
            dataset_path = cache_path
            print(f"Using cached dataset from {cache_path}")
        else:
            from huggingface_hub import snapshot_download

            # Download or find the dataset path
            dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
            generate_tsv(dataset_path)
            update_flag = True

        data_path = os.path.join(dataset_path, f"{dataset}.tsv")
        if file_size(data_path, "GB") > 1:
            local_path = data_path.replace(".tsv", "_local.tsv")
            if (
                not osp.exists(local_path)
                or os.environ.get("FORCE_LOCAL", None)
                or update_flag
            ):
                from vlmeval.tools import LOCALIZE

                LOCALIZE(data_path, local_path)
            data_path = local_path
        return load(data_path)

    def post_build(self, dataset):
        self.TYPE = 'MMERealWorld'

    # Given one data record, return the built prompt (a multi-modal message), can override
    def build_prompt(self, line):
        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        question = line['question']

        choice_prompt = line['multi-choice options'] + '\n'
        question += ' ' + choice_prompt + self.SYS[self.dataset_name]

        msgs = []
        if isinstance(tgt_path, list):
            msgs.extend([dict(type='image', value=p) for p in tgt_path])
        else:
            msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=question))
        return msgs

    # It returns a dictionary
    @classmethod
    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.multiple_choice import extract_characters_regex, get_dimension_rating
        assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
        FAIL_MSG = 'Failed to obtain answer via API.'
        tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
        tgt_file = eval_file.replace('.xlsx', '_rating.json')
        score_file = eval_file.replace('.xlsx', '_score.xlsx')

        if not osp.exists(score_file):

            res = {} if not osp.exists(tmp_file) else load(tmp_file)
            res = {k: v for k, v in res.items() if FAIL_MSG not in v}

            data = load(eval_file)
            cnt_rejected = 0
            data_un = data[~pd.isna(data['prediction'])]

            for idx in data['index']:
                ans = data.loc[data['index'] == idx, 'answer'].values[0]
                pred = data.loc[data['index'] == idx, 'prediction'].values[0]

                extract_pred = extract_characters_regex(pred)
                if extract_pred == '':
                    cnt_rejected += 1
                    data.loc[data['index'] == idx, 'score'] = 0
                else:
                    data.loc[data['index'] == idx, 'score'] = int(extract_pred == ans)

            print(
                f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
                f'failed to obtain the score for another {cnt_rejected} questions. '
                f'Those questions will be counted as 0 score in ALL rating.'
            )

            dump(data, score_file)

        rating = get_dimension_rating(score_file)
        dump(rating, tgt_file)
        return rating


class HRBenchDataset(ImageMCQDataset):

    DATASET_URL = {
        'HRBench4K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_4k.tsv',
        'HRBench8K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_8k.tsv',
    }

    DATASET_MD5 = {
        'HRBench4K': 'f6b041b03d49543494b8a56d2e35be65',
        'HRBench8K': '274c9c7f89329b804a4723178a00219c',
    }

    def evaluate(self, eval_file, **judge_kwargs):
        assert os.path.exists(eval_file), '{} does not exist!'.format(eval_file)
        from .utils.multiple_choice import mcq_vanilla_eval
        from .utils.hrbench import report_acc_hrbench
        nproc = judge_kwargs.pop('nproc', 4)

        suffix = eval_file.split('.')[-1]
        model = judge_kwargs.get('model', 'extract_matching')
        assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
        name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
        name_str = name_str_map[model] if model in name_str_map else model

        if model == 'exact_matching':
            model = None
        elif gpt_key_set():
            model = build_judge(**judge_kwargs)
            if not model.working():
                warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
                warnings.warn(DEBUG_MESSAGE)
                model = None
        else:
            warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
            model = None

        result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')

        data = load(eval_file)
        data = data.sort_values(by='index')
        data['prediction'] = [str(x) for x in data['prediction']]
        # If not choice label, then use lower case
        for k in data.keys():
            data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)

        meta = self.data
        meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
        data_map = {x: y for x, y in zip(data['index'], data['question'])}
        for k in data_map:
            assert k in meta_q_map, (
                f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
            )

        score_file = eval_file.replace(f'.{suffix}', '_acc.csv')

        if osp.exists(score_file):
            acc = load(score_file)
            return acc
        data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
        dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
        data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))

        acc = report_acc_hrbench(data)

        score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
        dump(acc, score_file)

        return acc


class CustomMCQDataset(ImageMCQDataset):

    def load_data(self, dataset):
        data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')

        if file_size(data_path, 'GB') > 1:
            local_path = data_path.replace('.tsv', '_local.tsv')
            if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
                from ..tools import LOCALIZE
                LOCALIZE(data_path, local_path)
            data_path = local_path
        return load(data_path)


class NaturalBenchDataset(ImageMCQDataset):

    DATASET_URL = {
        'NaturalBenchDataset': (
            'https://huggingface.co/datasets/BaiqiL/'
            'NaturalBench/resolve/main/NaturalBenchDataset.tsv'
        ),
    }
    DATASET_MD5 = {
        'NaturalBenchDataset':'dbe25b044bc35696426381e9ba4fe930',
    }

    def build_prompt(self, line):
        SUFFIX_FOR_VQA = {
            "yes_no": "Please answer Yes or No.",
            "multiple_choice": "Please output the letter corresponding to the correct option."
        }
        if isinstance(line, int):
            line = self.data.iloc[line]

        if self.meta_only:
            tgt_path = toliststr(line['image_path'])
        else:
            tgt_path = self.dump_image(line)

        question = line['question']
        prompt = f'{question} {SUFFIX_FOR_VQA[line["type"]]}'
        msgs = []
        if isinstance(tgt_path, list):
            msgs.extend([dict(type='image', value=p) for p in tgt_path])
        else:
            msgs = [dict(type='image', value=tgt_path)]
        msgs.append(dict(type='text', value=prompt))

        return msgs

    def evaluate(self, eval_file, **judge_kwargs):
        from .utils.naturalbench import extract_answer, get_scores

        data = load(eval_file)
        data = data.sort_values(by='index')
        predictions = [str(x) for x in data['prediction']]
        answers = [str(x) for x in data['answer']]
        indexs = [str(x) for x in data['index']]
        meta = self.data
        types = [str(x) for x in meta['type']]
        results = {}
        assert len(predictions) == len(answers) == len(indexs) == len(types) == (1900 * 4)
        number_answered_samples = len(predictions) // 4
        for i in range(number_answered_samples):
            results[i] = {
                "q0_i0": extract_answer(predictions[i * 4], types[i * 4]),
                "q0_i1": extract_answer(predictions[i * 4 + 1], types[i * 4 + 1]),
                "q1_i0": extract_answer(predictions[i * 4 + 2], types[i * 4 + 2]),
                "q1_i1": extract_answer(predictions[i * 4 + 3], types[i * 4 + 3])
            }

        scores = get_scores(results)
        print(scores)
        score_file = 'NaturalBench_acc.csv'
        df = pd.DataFrame(list(scores.items()), columns=['Metric', 'Score'])
        dump(df, score_file)

        return scores