File size: 49,198 Bytes
1fc662a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
import warnings
import json
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
import pandas as pd
MMMB_URLS = {
'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
}
MTL_MMBench_URLS = {
'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
}
MMMB_MD5 = {
'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
}
MTL_MMBench_MD5 = {
'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
}
class ImageMCQDataset(ImageBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench.tsv', # Internal
'MMBench_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN.tsv', # Internal
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_V11.tsv', # Internal
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN_V11.tsv', # Internal
# SEEDBench Series
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench_IMG.tsv',
'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench2_Plus.tsv',
# ScienceQA Series
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_TEST.tsv',
# MMT-Bench
'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL_MI.tsv',
'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL.tsv',
'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL_MI.tsv',
'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL.tsv',
# AesBench
'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
# Q-Bench1
'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
# A-Bench
'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
# R-Bench
'R-Bench-Dis': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-dis.tsv',
'R-Bench-Ref': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-ref.tsv',
# Other Benchmarks
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
'TaskMeAnything_v1_imageqa_random': (
'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
),
'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv',
'WorldMedQA-V': 'https://opencompass.openxlab.space/utils/VLMEval/WorldMedQA-V.tsv',
'VisOnlyQA-VLMEvalKit': (
'https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real/'
'resolve/main/visonlyqa_vlmevalkit.tsv'
),
'3DSRBench': (
'https://huggingface.co/datasets/ccvl/3DSRBench/'
'resolve/main/3dsrbench_v1_vlmevalkit_circular.tsv'
),
}
DATASET_MD5 = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# SEEDBench
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
# ScienceQA
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
# MMT-Bench
'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
# AesBench
'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
# Q-Bench1
'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
# A-Bench
'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
# R-Bench
'R-Bench-Dis': 'd6e961dbfc43350688af2560226830b4',
'R-Bench-Ref': '270c1cb555acb523f3fdb178ed57021d',
# Other Benchmarks
'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '4de008f55dc4fd008ca9e15321dc44b7',
'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
'BLINK': '3b6649b6a662184ea046908e5506260e',
'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889',
'WorldMedQA-V': '441e63875e30c87f5750528b57b41285',
"VisOnlyQA-VLMEvalKit": 'cf460a31d2acb8d3a7cecd0e69298bfa',
'3DSRBench': '13a99f33164dc1b9faf0e8b8b01fd6f2',
}
DATASET_URL.update(MMMB_URLS)
DATASET_URL.update(MTL_MMBench_URLS)
DATASET_MD5.update(MMMB_MD5)
DATASET_MD5.update(MTL_MMBench_MD5)
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
data = load(eval_file)
data['index'] = [int(x) for x in data['index']]
dump(data, eval_file)
circular = True
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
if dataset == 'AesBench_VAL':
warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \
please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \
larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
if dataset == 'VisOnlyQA-VLMEvalKit':
warnings.warn('Note that the results on VisOnlyQA-VLMEvalKit are different from the results on \
the original VisOnlyQA. VisOnlyQA-VLMEvalKit does not include the \
chemistry__shape_multi split and uses a different evaluation prompt. Please \
explicitly specify the version of the dataset when you report results.')
return acc
class OpenMMMedical(ImageMCQDataset):
@classmethod
def supported_datasets(cls):
return ['OpenMMMedical']
def load_data(self, dataset='OpenMMMedical'):
image_folder = "/your/path/to/OpenMM_Medical"
def generate_tsv(pth):
import csv
from pathlib import Path
tsv_file_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
if os.path.exists(tsv_file_path):
print(f'{tsv_file_path} already exists.')
return
path = Path(pth)
json_files = [str(f) for f in path.rglob('*.json')]
fieldnames = ["index", "dataset", "question_id", "question_type", "question", "A", "B", "C", "D", "E", "answer", "image_path"]
index = 0
with open(tsv_file_path, 'w', encoding='utf-8', newline='') as tsv_file:
writer = csv.DictWriter(tsv_file, fieldnames=fieldnames, delimiter='\t')
writer.writeheader()
for json_file in json_files:
data_name = json_file.split('/')[-1].split('.')[0]
with open(json_file, 'r', encoding='utf-8') as f:
data = json.load(f)
for row in data:
line = {}
line['index'] = index
line['dataset'] = row['dataset']
line['question_id'] = row['question_id']
line['question_type'] = row['question_type']
line['question'] = row['question']
choices_letter = ["A", "B", "C", "D", "E"]
for i in range(len(choices_letter)):
if f"option_{choices_letter[i]}" in row:
line[choices_letter[i]] = row[f"option_{choices_letter[i]}"]
if row[f"option_{choices_letter[i]}"] == row['gt_answer']:
line['answer'] = choices_letter[i]
else:
break
line['image_path'] = os.path.join(image_folder, row['image_path'])
index += 1
writer.writerow(line)
print(f'TSV file saved to {tsv_file_path}')
generate_tsv(image_folder)
update_flag = True
data_path = os.path.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None) or update_flag:
from vlmeval.tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
prompt += options_prompt
prompt += "Answer with the option's letter from the given choices directly.\n"
# prompt += "Please select the correct answer from the options above. \n"
msgs = []
if tgt_path:
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def report_acc_by_groups(self, df, group_column):
res = defaultdict(list)
# Check for the 'split' column
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
if group_column not in df:
raise ValueError(f"Column '{group_column}' not found in dataframe.") # noqa: E713
abilities = list(set(df[group_column]))
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group_column] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125', 'gpt-4o']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4', 'gpt-4o': 'gpt4o'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data)
for group_col in ['dataset']:
acc_grouped = self.report_acc_by_groups(data, group_col)
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
dump(acc_grouped, score_file_grouped)
return acc
class MMMUDataset(ImageMCQDataset):
DATASET_URL = {
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
}
DATASET_MD5 = {
'MMMU_DEV_VAL': '585e8ad75e73f75dcad265dfd0417d64',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
}
@staticmethod
def split_MMMU(msgs):
text, images = None, []
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None
text = s['value']
text_segs = text.split('<image ')
if len(text_segs) == 1:
return msgs
segs = [dict(type='text', value=text_segs[0])]
for i, seg in enumerate(text_segs):
if i == 0:
continue
assert istype(seg[0], int) and seg[1] == '>'
image_idx = int(seg[0]) - 1
segs.append(dict(type='image', value=images[image_idx]))
segs.append(dict(type='text', value=seg[2:]))
return segs
def build_prompt(self, line):
msgs = super().build_prompt(line)
msgs = self.split_MMMU(msgs)
return msgs
class MUIRDataset(ImageMCQDataset):
DATASET_URL = {
'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
}
DATASET_MD5 = {
'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
}
@staticmethod
def split_MUIR(msgs):
text, images = None, []
# Separate images and text from msgs
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None # Ensure only one text entry is expected
text = s['value']
# Split text by <image> tags
text_segs = text.split('<image>')
# Initialize the segments list
segs = []
# Iterate through the text segments and images
for i, seg in enumerate(text_segs):
# Append the image if this is not the first segment and there are still images left
if i > 0 and i - 1 < len(images):
segs.append(dict(type='image', value=images[i - 1]))
# Append the text segment (if it's non-empty)
if len(seg) > 0:
segs.append(dict(type='text', value=seg))
return segs
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
# options_prompt = ''
options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
# for key, item in options.items():
# options_prompt += f'{key}. {item}\n'
prompt = ''
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
prompt += "\nAnswer with the option's letter from the given choices directly."
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
msgs = self.split_MUIR(msgs)
return msgs
class GMAIMMBenchDataset(ImageMCQDataset):
DATASET_URL = {
'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv',
'GMAI_mm_bench_TEST_part_1': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_1.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_2': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_2.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_3': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_3.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_4': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_4.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_5': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_5.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_6': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_6.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_7': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_7.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_8': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_8.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_9': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_9.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_10': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_10.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_11': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_11.tsv', # noqa: E501
}
DATASET_MD5 = {
'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324',
'GMAI_mm_bench_TEST_part_1': '900d735231230a63f4ed45665c078ef4',
'GMAI_mm_bench_TEST_part_2': '1b27ab621386945d7e4a765ad2d22b0e',
'GMAI_mm_bench_TEST_part_3': '44bdc2b6267dd505d529b8cad06f0fb2',
'GMAI_mm_bench_TEST_part_4': '5a04a04fcac9f1466709f242fdb80acb',
'GMAI_mm_bench_TEST_part_5': 'c70baf8909eda9af0ddeab275c721336',
'GMAI_mm_bench_TEST_part_6': '825abc39596b644dead9350d0cfa3b96',
'GMAI_mm_bench_TEST_part_7': 'defb8aed2fb77365a76b6b9abd6a2701',
'GMAI_mm_bench_TEST_part_8': 'ff490d60b85f2bb0abb67a435b298c65',
'GMAI_mm_bench_TEST_part_9': 'ff67c86f40da93b09139ac1d1ba5dc6b',
'GMAI_mm_bench_TEST_part_10': '3dae94627b9ac0fe00180d4780fbf6dc',
'GMAI_mm_bench_TEST_part_11': 'd08dc813f0eb6bbab63cae2a9d113c4b',
}
@classmethod
def supported_datasets(cls):
return ['GMAI-MMBench_VAL', 'GMAI-MMBench_TEST']
def load_data(self, dataset):
if dataset == 'GMAI-MMBench_VAL':
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
elif dataset == 'GMAI-MMBench_TEST':
dfs = []
for part_num in range(1, 12):
part_name = f'GMAI_mm_bench_TEST_part_{part_num}'
url = self.DATASET_URL[part_name]
file_md5 = self.DATASET_MD5.get(part_name)
tsv_path = osp.join(LMUDataRoot(), f'{part_name}.tsv')
if not osp.exists(tsv_path) or (file_md5 and md5(tsv_path) != file_md5):
download_file(url, filename=tsv_path)
local_path = tsv_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(tsv_path, local_path)
tsv_path = local_path
# 加载数据
df = load(tsv_path)
dfs.append(df)
# 合并所有数据
data = pd.concat(dfs, ignore_index=True)
return data
else:
raise ValueError(f"未知的数据集:{dataset}")
def report_acc_by_groups(self, df, group_column):
res = defaultdict(list)
# Check for the 'split' column
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
if group_column not in df:
raise ValueError(f"Column '{group_column}' not found in dataframe.") # noqa: E713
abilities = list(set(df[group_column]))
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group_column] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data)
for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
acc_grouped = self.report_acc_by_groups(data, group_col)
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
dump(acc_grouped, score_file_grouped)
return acc
class MMERealWorld(ImageMCQDataset):
TYPE = 'MMERealWorld'
DATASET_MD5 = {
'MME-RealWorld': '271c33ec814c39533c467ec6fb8a6f36',
'MME-RealWorld-Lite': '4c17057d7d3b6c4a0d4397c3dae0881c',
'MME-RealWorld-CN': 'daaa763d52a760a38606d5dedb3fe444',
}
SYS = {
'MME-RealWorld': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-Lite': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-CN': (
'根据图像选择上述多项选择题的最佳答案。只需回答正确选项的字母(A, B, C, D 或 E)。\n'
'最佳答案为:'
),
}
@classmethod
def supported_datasets(cls):
return ['MME-RealWorld', 'MME-RealWorld-CN', 'MME-RealWorld-Lite',]
def load_data(
self, dataset="MME-RealWorld", repo_id="yifanzhang114/MME-RealWorld-Base64"
):
def check_integrity(pth):
data_file = osp.join(pth, f"{dataset}.tsv")
if not os.path.exists(data_file):
return False
if md5(data_file) != self.DATASET_MD5[dataset]:
return False
return True
def generate_tsv(pth):
tsv_file = os.path.join(pth, f"{dataset}.tsv")
if os.path.exists(tsv_file):
print(f"{tsv_file} already exists.")
return
json_dir = os.path.join(pth, dataset)
json_files = [f for f in os.listdir(json_dir) if f.endswith(".json")]
data_list = []
for json_file in json_files:
with open(os.path.join(json_dir, json_file), "r") as f:
data = json.load(f)
for item in tqdm(data):
choice_prompt = (
"The choices are listed below:\n"
if dataset in ["MME-RealWorld", "MME-RealWorld-Lite"]
else "选项如下所示:\n"
)
data_list.append(
{
"index": item["index"],
"image": item["image"],
"question": item["question"],
"multi-choice options": choice_prompt
+ "\n".join(item["multi-choice options"]),
"A": item["multi-choice options"][0][4:],
"B": item["multi-choice options"][1][4:],
"C": item["multi-choice options"][2][4:],
"D": item["multi-choice options"][3][4:],
"E": item["multi-choice options"][4][4:],
"answer": item["answer"],
"category": item["category"],
"l2-category": item["l2-category"],
}
)
df = pd.DataFrame(data_list)
df.to_csv(tsv_file, sep="\t", index=False)
print(f"TSV file saved to {tsv_file}")
# Check if dataset is cached and has integrity
if dataset == "MME-RealWorld-Lite":
url = 'https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-Base64/resolve/main/mme_realworld_lite.tsv' # noqa: E501
file_md5 = (
self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
)
datas = self.prepare_tsv(url, file_md5)
choice_prompt = "The choices are listed below:\n"
for index, item in datas.iterrows():
options = eval(item["multi-choice options"])
datas.loc[index, "multi-choice options"] = choice_prompt + "\n".join(
options
)
datas.loc[index, "A"] = options[0][4:]
datas.loc[index, "B"] = options[1][4:]
datas.loc[index, "C"] = options[2][4:]
datas.loc[index, "D"] = options[3][4:]
datas.loc[index, "E"] = options[4][4:]
return datas
update_flag = False
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
print(f"Using cached dataset from {cache_path}")
else:
from huggingface_hub import snapshot_download
# Download or find the dataset path
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
generate_tsv(dataset_path)
update_flag = True
data_path = os.path.join(dataset_path, f"{dataset}.tsv")
if file_size(data_path, "GB") > 1:
local_path = data_path.replace(".tsv", "_local.tsv")
if (
not osp.exists(local_path)
or os.environ.get("FORCE_LOCAL", None)
or update_flag
):
from vlmeval.tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def post_build(self, dataset):
self.TYPE = 'MMERealWorld'
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
choice_prompt = line['multi-choice options'] + '\n'
question += ' ' + choice_prompt + self.SYS[self.dataset_name]
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=question))
return msgs
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import extract_characters_regex, get_dimension_rating
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
FAIL_MSG = 'Failed to obtain answer via API.'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
cnt_rejected = 0
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
extract_pred = extract_characters_regex(pred)
if extract_pred == '':
cnt_rejected += 1
data.loc[data['index'] == idx, 'score'] = 0
else:
data.loc[data['index'] == idx, 'score'] = int(extract_pred == ans)
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {cnt_rejected} questions. '
f'Those questions will be counted as 0 score in ALL rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class HRBenchDataset(ImageMCQDataset):
DATASET_URL = {
'HRBench4K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_4k.tsv',
'HRBench8K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_8k.tsv',
}
DATASET_MD5 = {
'HRBench4K': 'f6b041b03d49543494b8a56d2e35be65',
'HRBench8K': '274c9c7f89329b804a4723178a00219c',
}
def evaluate(self, eval_file, **judge_kwargs):
assert os.path.exists(eval_file), '{} does not exist!'.format(eval_file)
from .utils.multiple_choice import mcq_vanilla_eval
from .utils.hrbench import report_acc_hrbench
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'extract_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
if osp.exists(score_file):
acc = load(score_file)
return acc
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc_hrbench(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
return acc
class CustomMCQDataset(ImageMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
class NaturalBenchDataset(ImageMCQDataset):
DATASET_URL = {
'NaturalBenchDataset': (
'https://huggingface.co/datasets/BaiqiL/'
'NaturalBench/resolve/main/NaturalBenchDataset.tsv'
),
}
DATASET_MD5 = {
'NaturalBenchDataset':'dbe25b044bc35696426381e9ba4fe930',
}
def build_prompt(self, line):
SUFFIX_FOR_VQA = {
"yes_no": "Please answer Yes or No.",
"multiple_choice": "Please output the letter corresponding to the correct option."
}
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
prompt = f'{question} {SUFFIX_FOR_VQA[line["type"]]}'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.naturalbench import extract_answer, get_scores
data = load(eval_file)
data = data.sort_values(by='index')
predictions = [str(x) for x in data['prediction']]
answers = [str(x) for x in data['answer']]
indexs = [str(x) for x in data['index']]
meta = self.data
types = [str(x) for x in meta['type']]
results = {}
assert len(predictions) == len(answers) == len(indexs) == len(types) == (1900 * 4)
number_answered_samples = len(predictions) // 4
for i in range(number_answered_samples):
results[i] = {
"q0_i0": extract_answer(predictions[i * 4], types[i * 4]),
"q0_i1": extract_answer(predictions[i * 4 + 1], types[i * 4 + 1]),
"q1_i0": extract_answer(predictions[i * 4 + 2], types[i * 4 + 2]),
"q1_i1": extract_answer(predictions[i * 4 + 3], types[i * 4 + 3])
}
scores = get_scores(results)
print(scores)
score_file = 'NaturalBench_acc.csv'
df = pd.DataFrame(list(scores.items()), columns=['Metric', 'Score'])
dump(df, score_file)
return scores
|