File size: 5,896 Bytes
212b70c
 
1ede384
212b70c
1ede384
212b70c
 
b42cad6
1ede384
 
 
212b70c
 
 
 
 
 
 
 
 
99f3be3
 
4924311
5f51769
45f21af
3b3a3f3
 
212b70c
 
 
 
 
 
 
 
3b3a3f3
 
 
212b70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3a3f3
 
 
 
 
 
 
 
 
 
212b70c
3b3a3f3
 
 
212b70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3a3f3
 
 
 
 
 
 
 
212b70c
 
 
 
 
 
 
3b3a3f3
 
 
99f3be3
3b3a3f3
1ede384
212b70c
1ede384
5f51769
1ede384
 
5f51769
1ede384
 
 
3b3a3f3
 
 
 
 
 
 
 
 
 
 
 
dc94f26
212b70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
""" Babelbox Voice Dataset"""

import os 
import csv
import codecs
import datasets
from typing import List
from pathlib import Path
from tqdm import tqdm

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@inproceedings{babelboxvoice:2022,
  author = {Andersson, O. and Bjelkenhed, M. and Bielsa, M. et al},
  title = {Babelbox Voice: A Speech Corpus for training Whisper},
  year = 2022
}
"""

_DL_BASE_URL = "https://huggingface.co/datasets/babelbox/babelbox_voice/resolve/main/archive/nst"
_DL_URL_FORMAT = _DL_BASE_URL + "/nst-data-{:0>3d}.tar.gz" 

_METADATA_URL = "https://huggingface.co/datasets/babelbox/babelbox_voice/resolve/main/archive/nst/metadata.tar.gz"

_HF_REPO_PATH = "https://huggingface.co/datasets/babelbox/babelbox_voice/"

class BabelboxVoiceConfig(datasets.BuilderConfig):
    """BuilderConfig for BabelboxVoice."""

    def __init__(self, name, version, **kwargs):
        self.name = name
        self.version = version
        self.features = kwargs.pop("features", None)
        self.description = kwargs.pop("description", None)
        self.data_url = kwargs.pop("data_url", None)
        self.nb_data_shards = kwargs.pop("nb_data_shards", None)
        self.metadata_url = kwargs.pop("metadata_url", None)

        description = (
            f"Babelbox Voice speech to text dataset."
        )
        super(BabelboxVoiceConfig, self).__init__(
            name=name,
            version=version,
            **kwargs,
        )


class BabelboxVoice(datasets.GeneratorBasedBuilder):
    
    VERSION = datasets.Version("1.0.0")
    
    BUILDER_CONFIGS = [
        BabelboxVoiceConfig(
                name="nst",
                version=VERSION,
                description="This part of Babel Voice includes data from National Library of Norway",
                features=["path", "audio", "sentence"],
                data_url= _HF_REPO_PATH + "resolve/main/archive/nst/nst-data-{:0>3d}.tar.gz",
                nb_data_shards = 30,
                metadata_url= _HF_REPO_PATH + "resolve/main/archive/nst/metadata.tar.gz"
            ),
        BabelboxVoiceConfig(
                name="audiosubs",
                version=VERSION,
                description="This part of Babel Voice includes data from audio with subtitles",
                features=["path", "audio", "sentence"],
                data_url= _HF_REPO_PATH + "resolve/main/archive/audiosubs/audiosubs-data-{:0>3d}.tar.gz",
                nb_data_shards = 2,
                metadata_url= None
            )
    ]
         
    DEFAULT_CONFIG_NAME = "nst"

    def _info(self):
        description = (
            "Babelbox Voice is an initiative to help teach machines how real people speak. "
        )
        if self.config.name == "nst":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "audio": datasets.features.Audio(sampling_rate=16_000),
                    "sentence": datasets.Value("string")
                }
            )
        else:
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "audio": datasets.features.Audio(sampling_rate=16_000),
                    "sentence": datasets.Value("string")
                }
            )
      
        return datasets.DatasetInfo(
            description=description,
            features=features,
            supervised_keys=None,
            version=self.config.version
        )
    
    def get_metadata(self, dl_manager, metadata_url):
        if metadata_url == None: return None
        
        metadata_path = dl_manager.download(metadata_url)
        local_extracted_metadata_path = dl_manager.extract(metadata_path) if not dl_manager.is_streaming else None
        
        metadata_archive = dl_manager.iter_archive(metadata_path)
        metadata = {}
        for path, file in metadata_archive:
            reader = csv.DictReader(codecs.iterdecode(file, 'utf-8'))
            for row in tqdm(reader, desc="Reading metadata..."):
                        filename = row['filename_channel_1']
                        sentence = row['text']
                        metadata[filename] = sentence
                        
        return metadata
        

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        
        download_urls = [self.config.data_url.format(i) for i in range(1, self.config.nb_data_shards + 1) ]
            
        archive_paths = dl_manager.download(download_urls)
        local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
            
        metadata = self.get_metadata(dl_manager, self.config.metadata_url)
                                
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, 
                gen_kwargs={
                    "local_extracted_archive_paths": local_extracted_archive_paths,
                    "archives": [dl_manager.iter_archive(path) for path in archive_paths],
                    "metadata": metadata
                })
        ]
    
    def _generate_examples(self, local_extracted_archive_paths, archives, metadata):
           
            sampling_rate = 16000
                              
            for i, audio_archive in enumerate(archives):
                for path, file in audio_archive:
                    if local_extracted_archive_paths == False:
                        path = os.path.join(local_extracted_archive_paths[i], path) 
                    result = dict()          
                    result["path"] = path
                    result["audio"] = {"path": path, "bytes": file.read()}
                    result["sentence"] = metadata[path] 
                    yield path, result