File size: 4,360 Bytes
212b70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
""" Babelbox Voice Dataset"""
import csv
import os
import urllib
import datasets
import requests
import glob
import gzip
from typing import List
from datasets.utils.py_utils import size_str
logger = datasets.logging.get_logger(__name__)
import torchaudio
import torch
from tqdm import tqdm
_CITATION = """\
@inproceedings{babelboxvoice:2022,
author = {Andersson, O. and Bjelkenhed, M. and Bielsa, M. et al},
title = {Babelbox Voice: A Speech Corpus for training Whisper},
year = 2022
}
"""
class BabelboxVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for BabelboxVoice."""
def __init__(self, name, version, **kwargs):
self.name = name
self.version = version
self.features = kwargs.pop("features", None)
self.description = kwargs.pop("description", None)
self.archive_url = kwargs.pop("archive_url", None)
self.meta_url = kwargs.pop("meta_url", None)
description = (
f"Babelbox Voice speech to text dataset."
)
super(BabelboxVoiceConfig, self).__init__(
name=name,
version=version,
**kwargs,
)
class BabelboxVoice(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
BabelboxVoiceConfig(
name="nst",
version=VERSION,
description="This part of Pandora Voice includes data from National Library of Norway",
features=["path", "audio", "sentence"],
archive_url="/home/jovyan/shared-data/data/nst/archive",
meta_url="/home/jovyan/shared-data/data/nst/NST_se.csv"
)
]
DEFAULT_CONFIG_NAME = "nst"
def _info(self):
description = (
"Babelbox Voice is an initiative to help teach machines how real people speak. "
)
if self.config.name == "nst":
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"sentence": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
version=self.config.version
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
archive_dir="/home/jovyan/shared-data/data/nst/archive"
archive_files = sorted(glob.glob(archive_dir + '/**.tar.gz'), reverse=False)
archive_paths = dl_manager.download(archive_files)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
meta_url = self.config.meta_url
meta_path = dl_manager.download_and_extract(meta_url)
metadata = {}
with open(meta_path, encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in tqdm(reader, desc="Reading metadata..."):
filename = row['filename_channel_1']
sentence = row['text']
metadata[filename] = sentence
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths,
"archives": [dl_manager.iter_archive(path) for path in archive_paths],
"metadata": metadata
})
]
def _generate_examples(self, local_extracted_archive_paths, archives, metadata):
sampling_rate = 16000
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
if local_extracted_archive_paths == False:
path = os.path.join(local_extracted_archive_paths[i], path)
result = dict()
result["path"] = path
result["audio"] = {"path": path, "bytes": file.read()}
result["sentence"] = metadata[path]
yield path, result
|