awinml commited on
Commit
02b949b
·
verified ·
1 Parent(s): 0f79e40

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md CHANGED
@@ -161,4 +161,93 @@ configs:
161
  path: only_english_lowlevel/train-*
162
  - split: validation
163
  path: only_english_lowlevel/validation-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  path: only_english_lowlevel/train-*
162
  - split: validation
163
  path: only_english_lowlevel/validation-*
164
+ task_categories:
165
+ - text-classification
166
+ language:
167
+ - en
168
+ - es
169
+ - pl
170
+ - hu
171
+ - el
172
+ - da
173
+ - tr
174
+ - ja
175
+ - sv
176
+ - fi
177
+ - 'no'
178
+ - ru
179
+ - it
180
+ - he
181
+ - is
182
+ tags:
183
+ - finance
184
+ size_categories:
185
+ - 1K<n<10K
186
  ---
187
+
188
+ # MultiFin
189
+
190
+ <!-- Provide a quick summary of the dataset. -->
191
+
192
+ MultiFin – a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families.
193
+ The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class.
194
+ ## Dataset Details
195
+
196
+ ### Dataset Description
197
+
198
+ The MULTIFIN dataset is a multilingual corpus, consisting of real-world article headlines covering 15
199
+ languages. The corpus is annotated using hierarchical label structure, providing two classification tasks:
200
+ multi-class and multi-label classification.
201
+
202
+
203
+ - **Curated by:** Rasmus Jørgensen, Oliver Brandt, Mareike Hartmann, Xiang Dai, Christian Igel, and Desmond Elliott.
204
+ - **Language(s) (NLP):** English, Spanish, Polish, Hungarian, Greek, Danish, Turkish, Japanese, Swedish, Finnish, Norwegian, Russian, Italian, Hebrew, Icelandic.
205
+ - **License:** [More Information Needed]
206
+
207
+ ### Dataset Sources [optional]
208
+
209
+ <!-- Provide the basic links for the dataset. -->
210
+
211
+ - **Repository:** https://github.com/RasmusKaer/MultiFin
212
+ - **Paper:** https://aclanthology.org/2023.findings-eacl.66/
213
+
214
+
215
+ ## Dataset Structure
216
+
217
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
218
+
219
+ [More Information Needed]
220
+
221
+
222
+
223
+ ## Citation
224
+
225
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
226
+
227
+ **BibTeX:**
228
+
229
+ @inproceedings{jorgensen-etal-2023-multifin,
230
+ title = "{M}ulti{F}in: A Dataset for Multilingual Financial {NLP}",
231
+ author = "J{\o}rgensen, Rasmus and
232
+ Brandt, Oliver and
233
+ Hartmann, Mareike and
234
+ Dai, Xiang and
235
+ Igel, Christian and
236
+ Elliott, Desmond",
237
+ editor = "Vlachos, Andreas and
238
+ Augenstein, Isabelle",
239
+ booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
240
+ month = may,
241
+ year = "2023",
242
+ address = "Dubrovnik, Croatia",
243
+ publisher = "Association for Computational Linguistics",
244
+ url = "https://aclanthology.org/2023.findings-eacl.66",
245
+ doi = "10.18653/v1/2023.findings-eacl.66",
246
+ pages = "894--909",
247
+ abstract = "Financial information is generated and distributed across the world, resulting in a vast amount of domain-specific multilingual data. Multilingual models adapted to the financial domain would ease deployment when an organization needs to work with multiple languages on a regular basis. For the development and evaluation of such models, there is a need for multilingual financial language processing datasets. We describe MultiFin {--} a publicly available financial dataset consisting of real-world article headlines covering 15 languages across different writing systems and language families. The dataset consists of hierarchical label structure providing two classification tasks: multi-label and multi-class. We develop our annotation schema based on a real-world application and annotate our dataset using both {`}label by native-speaker{'} and {`}translate-then-label{'} approaches. The evaluation of several popular multilingual models, e.g., mBERT, XLM-R, and mT5, show that although decent accuracy can be achieved in high-resource languages, there is substantial room for improvement in low-resource languages.",
248
+ }
249
+
250
+
251
+
252
+
253
+