Datasets:
Tasks:
Question Answering
Modalities:
Text
Languages:
English
Size:
10K - 100K
Tags:
knowledge-base-qa
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph.""" | |
import json | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
@article{DBLP-QuAD, | |
title={DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph}, | |
author={Banerjee, Debayan and Awale, Sushil and Usbeck, Ricardo and Biemann, Chris}, | |
year={2023} | |
""" | |
_DESCRIPTION = """\ | |
DBLP-QuAD is a scholarly knowledge graph question answering dataset with \ | |
10,000 question - SPARQL query pairs targeting the DBLP knowledge graph. \ | |
The dataset is split into 7,000 training, 1,000 validation and 2,000 test \ | |
questions. | |
""" | |
_URL = "https://zenodo.org/record/7643971/files/DBLP-QuAD.zip" | |
class DBLPQuAD(datasets.GeneratorBasedBuilder): | |
""" | |
DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph. | |
Version 1.0.0 | |
""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"query_type": datasets.Value("string"), | |
"question": datasets.dataset_dict.DatasetDict({ | |
"string": datasets.Value("string") | |
}), | |
"paraphrased_question": datasets.dataset_dict.DatasetDict({ | |
"string": datasets.Value("string") | |
}), | |
"query": datasets.dataset_dict.DatasetDict({ | |
"sparql": datasets.Value("string") | |
}), | |
"template_id": datasets.Value("string"), | |
"entities": datasets.features.Sequence(datasets.Value("string")), | |
"relations": datasets.features.Sequence(datasets.Value("string")), | |
"temporal": datasets.Value("bool"), | |
"held_out": datasets.Value("bool") | |
} | |
), | |
supervised_keys=None, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URL) | |
dl_dir = os.path.join(dl_dir, "DBLP-QuAD") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(dl_dir, "train", "questions.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": os.path.join(dl_dir, "valid", "questions.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": os.path.join(dl_dir, "test", "questions.json")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f)["questions"] | |
for id_, row in enumerate(data): | |
yield id_, { | |
"id": row["id"], | |
"query_type": row["query_type"], | |
"question": row["question"], | |
"paraphrased_question": row["paraphrased_question"], | |
"query": row["query"], | |
"template_id": row["template_id"], | |
"entities": row["entities"], | |
"relations": row["relations"], | |
"temporal": row["temporal"], | |
"held_out": row["held_out"] | |
} | |