gabrielaltay
commited on
Commit
•
e5dbe31
1
Parent(s):
0e19a9c
upload hubscripts/ntcir_13_medweb_hub.py to hub from bigbio repo
Browse files- ntcir_13_medweb.py +409 -0
ntcir_13_medweb.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
|
18 |
+
to perform a multi-label classification that labels for eight diseases/symptoms must
|
19 |
+
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
|
20 |
+
labels for eight diseases/symptoms. The achievements of this task can almost be
|
21 |
+
directly applied to a fundamental engine for actual applications.
|
22 |
+
|
23 |
+
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
|
24 |
+
covering three languages (Japanese, English, and Chinese), and annotated with eight
|
25 |
+
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
|
26 |
+
fever, runny nose, and cold.
|
27 |
+
|
28 |
+
The dataset consists of a single archive file:
|
29 |
+
- ntcir13_MedWeb_taskdata.zip
|
30 |
+
|
31 |
+
which can be obtained after filling out a form to provide information about the
|
32 |
+
usage context under this URL: http://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html
|
33 |
+
|
34 |
+
The zip archive contains a folder with name 'MedWeb_TestCollection'.
|
35 |
+
Inside this folder, there are the following individual data files:
|
36 |
+
├── NTCIR-13_MedWeb_en_test.xlsx
|
37 |
+
├── NTCIR-13_MedWeb_en_training.xlsx
|
38 |
+
├── NTCIR-13_MedWeb_ja_test.xlsx
|
39 |
+
├── NTCIR-13_MedWeb_ja_training.xlsx
|
40 |
+
├── NTCIR-13_MedWeb_zh_test.xlsx
|
41 |
+
└── NTCIR-13_MedWeb_zh_training.xlsx
|
42 |
+
|
43 |
+
The excel sheets contain a training and test split for each of the languages
|
44 |
+
('en' stands for 'english', 'ja' stands for 'japanese' and 'zh' stands for
|
45 |
+
(simplified) chinese).
|
46 |
+
|
47 |
+
The archive file containing this dataset must be on the users local machine
|
48 |
+
in a single directory that is passed to `datasets.load_dataset` via
|
49 |
+
the `data_dir` kwarg. This loader script will read this archive file
|
50 |
+
directly (i.e. the user should not uncompress, untar or unzip any of
|
51 |
+
the files).
|
52 |
+
|
53 |
+
For more information on this dataset, see:
|
54 |
+
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html
|
55 |
+
"""
|
56 |
+
|
57 |
+
import re
|
58 |
+
from pathlib import Path
|
59 |
+
from typing import Dict, List, Tuple
|
60 |
+
|
61 |
+
import datasets
|
62 |
+
import pandas as pd
|
63 |
+
|
64 |
+
from .bigbiohub import text_features
|
65 |
+
from .bigbiohub import BigBioConfig
|
66 |
+
from .bigbiohub import Tasks
|
67 |
+
|
68 |
+
_LANGUAGES = ['English', 'Chinese', 'Japanese']
|
69 |
+
_PUBMED = False
|
70 |
+
_LOCAL = True
|
71 |
+
_CITATION = """\
|
72 |
+
@article{wakamiya2017overview,
|
73 |
+
author = {Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano, Tomoko Ohkuma and Eiji Aramaki},
|
74 |
+
title = {Overview of the NTCIR-13 MedWeb Task},
|
75 |
+
journal = {Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-13)},
|
76 |
+
year = {2017},
|
77 |
+
url = {
|
78 |
+
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-MEDWEB-WakamiyaS.pdf
|
79 |
+
},
|
80 |
+
}
|
81 |
+
"""
|
82 |
+
|
83 |
+
_DATASETNAME = "ntcir_13_medweb"
|
84 |
+
_DISPLAYNAME = "NTCIR-13 MedWeb"
|
85 |
+
|
86 |
+
_DESCRIPTION = """\
|
87 |
+
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
|
88 |
+
to perform a multi-label classification that labels for eight diseases/symptoms must
|
89 |
+
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
|
90 |
+
labels for eight diseases/symptoms. The achievements of this task can almost be
|
91 |
+
directly applied to a fundamental engine for actual applications.
|
92 |
+
|
93 |
+
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
|
94 |
+
covering three languages (Japanese, English, and Chinese), and annotated with eight
|
95 |
+
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
|
96 |
+
fever, runny nose, and cold.
|
97 |
+
|
98 |
+
For more information, see:
|
99 |
+
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html
|
100 |
+
|
101 |
+
As this dataset also provides a parallel corpus of pseudo-tweets for english,
|
102 |
+
japanese and chinese it can also be used to train translation models between
|
103 |
+
these three languages.
|
104 |
+
"""
|
105 |
+
|
106 |
+
_HOMEPAGE = "http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html"
|
107 |
+
|
108 |
+
_LICENSE = 'Creative Commons Attribution 4.0 International'
|
109 |
+
|
110 |
+
# NOTE: Data can only be obtained (locally) by first filling out form to provide
|
111 |
+
# information about usage context under this link: http://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html
|
112 |
+
_URLS = {
|
113 |
+
_DATASETNAME: "ntcir13_MedWeb_taskdata.zip",
|
114 |
+
}
|
115 |
+
|
116 |
+
_SUPPORTED_TASKS = [
|
117 |
+
Tasks.TRANSLATION,
|
118 |
+
Tasks.TEXT_CLASSIFICATION,
|
119 |
+
]
|
120 |
+
|
121 |
+
_SOURCE_VERSION = "1.0.0"
|
122 |
+
|
123 |
+
_BIGBIO_VERSION = "1.0.0"
|
124 |
+
|
125 |
+
|
126 |
+
class NTCIR13MedWebDataset(datasets.GeneratorBasedBuilder):
|
127 |
+
"""
|
128 |
+
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
|
129 |
+
to perform a multi-label classification that labels for eight diseases/symptoms must
|
130 |
+
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
|
131 |
+
labels for eight diseases/symptoms. The achievements of this task can almost be
|
132 |
+
directly applied to a fundamental engine for actual applications.
|
133 |
+
|
134 |
+
This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
|
135 |
+
covering three languages (Japanese, English, and Chinese), and annotated with eight
|
136 |
+
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
|
137 |
+
fever, runny nose, and cold.
|
138 |
+
|
139 |
+
For more information, see:
|
140 |
+
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html
|
141 |
+
|
142 |
+
As this dataset also provides a parallel corpus of pseudo-tweets for english,
|
143 |
+
japanese and chinese it can also be used to train translation models between
|
144 |
+
these three languages.
|
145 |
+
"""
|
146 |
+
|
147 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
148 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
149 |
+
|
150 |
+
BUILDER_CONFIGS = [
|
151 |
+
# Source configuration - all classification data for all languages
|
152 |
+
BigBioConfig(
|
153 |
+
name="ntcir_13_medweb_source",
|
154 |
+
version=SOURCE_VERSION,
|
155 |
+
description="NTCIR 13 MedWeb source schema",
|
156 |
+
schema="source",
|
157 |
+
subset_id="ntcir_13_medweb_source",
|
158 |
+
)
|
159 |
+
]
|
160 |
+
for language_name, language_code in (
|
161 |
+
("Japanese", "ja"),
|
162 |
+
("English", "en"),
|
163 |
+
("Chinese", "zh"),
|
164 |
+
):
|
165 |
+
# NOTE: BigBio text classification configurations
|
166 |
+
# Text classification data for each language
|
167 |
+
BUILDER_CONFIGS.append(
|
168 |
+
BigBioConfig(
|
169 |
+
name=f"ntcir_13_medweb_classification_{language_code}_bigbio_text",
|
170 |
+
version=BIGBIO_VERSION,
|
171 |
+
description=f"NTCIR 13 MedWeb BigBio {language_name} Classification schema",
|
172 |
+
schema="bigbio_text",
|
173 |
+
subset_id=f"ntcir_13_medweb_classification_{language_code}_bigbio_text",
|
174 |
+
),
|
175 |
+
)
|
176 |
+
|
177 |
+
for target_language_name, target_language_code in (
|
178 |
+
("Japanese", "ja"),
|
179 |
+
("English", "en"),
|
180 |
+
("Chinese", "zh"),
|
181 |
+
):
|
182 |
+
# NOTE: BigBio text to text (translation) configurations
|
183 |
+
# Parallel text corpora for all pairs of languages
|
184 |
+
if language_name != target_language_name:
|
185 |
+
BUILDER_CONFIGS.append(
|
186 |
+
BigBioConfig(
|
187 |
+
name=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t",
|
188 |
+
version=BIGBIO_VERSION,
|
189 |
+
description=(
|
190 |
+
f"NTCIR 13 MedWeb BigBio {language_name} -> {target_language_name} translation schema",
|
191 |
+
),
|
192 |
+
schema="bigbio_t2t",
|
193 |
+
subset_id=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t",
|
194 |
+
),
|
195 |
+
)
|
196 |
+
|
197 |
+
DEFAULT_CONFIG_NAME = "ntcir_13_medweb_source"
|
198 |
+
|
199 |
+
def _info(self) -> datasets.DatasetInfo:
|
200 |
+
# Create the source schema; this schema will keep all keys/information/labels
|
201 |
+
# as close to the original dataset as possible.
|
202 |
+
if self.config.schema == "source":
|
203 |
+
features = datasets.Features(
|
204 |
+
{
|
205 |
+
"ID": datasets.Value("string"),
|
206 |
+
"Language": datasets.Value("string"),
|
207 |
+
"Tweet": datasets.Value("string"),
|
208 |
+
"Influenza": datasets.Value("string"),
|
209 |
+
"Diarrhea": datasets.Value("string"),
|
210 |
+
"Hayfever": datasets.Value("string"),
|
211 |
+
"Cough": datasets.Value("string"),
|
212 |
+
"Headache": datasets.Value("string"),
|
213 |
+
"Fever": datasets.Value("string"),
|
214 |
+
"Runnynose": datasets.Value("string"),
|
215 |
+
"Cold": datasets.Value("string"),
|
216 |
+
}
|
217 |
+
)
|
218 |
+
elif self.config.schema == "bigbio_text":
|
219 |
+
features = text_features
|
220 |
+
elif self.config.schema == "bigbio_t2t":
|
221 |
+
features = text2text_features
|
222 |
+
|
223 |
+
return datasets.DatasetInfo(
|
224 |
+
description=_DESCRIPTION,
|
225 |
+
features=features,
|
226 |
+
homepage=_HOMEPAGE,
|
227 |
+
license=str(_LICENSE),
|
228 |
+
citation=_CITATION,
|
229 |
+
)
|
230 |
+
|
231 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
232 |
+
"""Returns SplitGenerators."""
|
233 |
+
|
234 |
+
if self.config.data_dir is None:
|
235 |
+
raise ValueError(
|
236 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
data_dir = self.config.data_dir
|
240 |
+
|
241 |
+
raw_data_dir = dl_manager.download_and_extract(
|
242 |
+
str(Path(data_dir) / _URLS[_DATASETNAME])
|
243 |
+
)
|
244 |
+
|
245 |
+
data_dir = Path(raw_data_dir) / "MedWeb_TestCollection"
|
246 |
+
|
247 |
+
if self.config.schema == "source":
|
248 |
+
filepaths = {
|
249 |
+
datasets.Split.TRAIN: sorted(Path(data_dir).glob("*_training.xlsx")),
|
250 |
+
datasets.Split.TEST: sorted(Path(data_dir).glob("*_test.xlsx")),
|
251 |
+
}
|
252 |
+
elif self.config.schema == "bigbio_text":
|
253 |
+
# NOTE: Identify the language for the chosen subset using regex
|
254 |
+
pattern = r"ntcir_13_medweb_classification_(?P<language_code>ja|en|zh)_bigbio_text"
|
255 |
+
match = re.search(pattern=pattern, string=self.config.subset_id)
|
256 |
+
|
257 |
+
if not match:
|
258 |
+
raise ValueError(
|
259 |
+
"Unable to parse language code for text classification from dataset subset id: "
|
260 |
+
f"'{self.config.subset_id}'. Attempted to parse using this regex pattern: "
|
261 |
+
f"'{pattern}' but failed to get a match."
|
262 |
+
)
|
263 |
+
|
264 |
+
language_code = match.group("language_code")
|
265 |
+
|
266 |
+
filepaths = {
|
267 |
+
datasets.Split.TRAIN: (
|
268 |
+
Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_training.xlsx",
|
269 |
+
),
|
270 |
+
datasets.Split.TEST: (
|
271 |
+
Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_test.xlsx",
|
272 |
+
),
|
273 |
+
}
|
274 |
+
elif self.config.schema == "bigbio_t2t":
|
275 |
+
pattern = r"ntcir_13_medweb_translation_(?P<source_language_code>ja|en|zh)_(?P<target_language_code>ja|en|zh)_bigbio_t2t"
|
276 |
+
match = re.search(pattern=pattern, string=self.config.subset_id)
|
277 |
+
|
278 |
+
if not match:
|
279 |
+
raise ValueError(
|
280 |
+
"Unable to parse source and target language codes for translation "
|
281 |
+
f"from dataset subset id: '{self.config.subset_id}'. Attempted to parse "
|
282 |
+
f"using this regex pattern: '{pattern}' but failed to get a match."
|
283 |
+
)
|
284 |
+
|
285 |
+
source_language_code = match.group("source_language_code")
|
286 |
+
target_language_code = match.group("target_language_code")
|
287 |
+
|
288 |
+
filepaths = {
|
289 |
+
datasets.Split.TRAIN: (
|
290 |
+
Path(data_dir)
|
291 |
+
/ f"NTCIR-13_MedWeb_{source_language_code}_training.xlsx",
|
292 |
+
Path(data_dir)
|
293 |
+
/ f"NTCIR-13_MedWeb_{target_language_code}_training.xlsx",
|
294 |
+
),
|
295 |
+
datasets.Split.TEST: (
|
296 |
+
Path(data_dir)
|
297 |
+
/ f"NTCIR-13_MedWeb_{source_language_code}_test.xlsx",
|
298 |
+
Path(data_dir)
|
299 |
+
/ f"NTCIR-13_MedWeb_{target_language_code}_test.xlsx",
|
300 |
+
),
|
301 |
+
}
|
302 |
+
|
303 |
+
return [
|
304 |
+
datasets.SplitGenerator(
|
305 |
+
name=split_name,
|
306 |
+
gen_kwargs={
|
307 |
+
"filepaths": filepaths[split_name],
|
308 |
+
"split": split_name,
|
309 |
+
},
|
310 |
+
)
|
311 |
+
for split_name in (datasets.Split.TRAIN, datasets.Split.TEST)
|
312 |
+
]
|
313 |
+
|
314 |
+
def _language_from_filepath(self, filepath: Path):
|
315 |
+
pattern = r"NTCIR-13_MedWeb_(?P<language_code>ja|en|zh)_(training|test).xlsx"
|
316 |
+
match = re.search(pattern=pattern, string=filepath.name)
|
317 |
+
|
318 |
+
if not match:
|
319 |
+
raise ValueError(
|
320 |
+
"Unable to parse language code from filename. "
|
321 |
+
f"Filename was: '{filepath.name}' and tried to parse using this "
|
322 |
+
f"regex pattern: '{pattern}' but failed to get a match."
|
323 |
+
)
|
324 |
+
|
325 |
+
return match.group("language_code")
|
326 |
+
|
327 |
+
def _generate_examples(
|
328 |
+
self, filepaths: Tuple[Path], split: str
|
329 |
+
) -> Tuple[int, Dict]:
|
330 |
+
"""Yields examples as (key, example) tuples."""
|
331 |
+
|
332 |
+
if self.config.schema == "source":
|
333 |
+
dataframes = []
|
334 |
+
|
335 |
+
for filepath in filepaths:
|
336 |
+
language_code = self._language_from_filepath(filepath)
|
337 |
+
df = pd.read_excel(filepath, sheet_name=f"{language_code}_{split}")
|
338 |
+
df["Language"] = language_code
|
339 |
+
dataframes.append(df)
|
340 |
+
|
341 |
+
df = pd.concat(dataframes)
|
342 |
+
|
343 |
+
for row_index, row in enumerate(df.itertuples(index=False)):
|
344 |
+
yield row_index, row._asdict()
|
345 |
+
|
346 |
+
elif self.config.schema == "bigbio_text":
|
347 |
+
(filepath,) = filepaths
|
348 |
+
language_code = self._language_from_filepath(filepath)
|
349 |
+
|
350 |
+
df = pd.read_excel(
|
351 |
+
filepath,
|
352 |
+
sheet_name=f"{language_code}_{split}",
|
353 |
+
)
|
354 |
+
|
355 |
+
label_column_names = [
|
356 |
+
column_name
|
357 |
+
for column_name in df.columns
|
358 |
+
if column_name not in ("ID", "Tweet")
|
359 |
+
]
|
360 |
+
labels = (
|
361 |
+
df[label_column_names]
|
362 |
+
.apply(lambda row: row[row == "p"].index.tolist(), axis=1)
|
363 |
+
.values
|
364 |
+
)
|
365 |
+
|
366 |
+
ids = df["ID"]
|
367 |
+
tweets = df["Tweet"]
|
368 |
+
|
369 |
+
for row_index, (record_labels, record_id, tweet) in enumerate(
|
370 |
+
zip(labels, ids, tweets)
|
371 |
+
):
|
372 |
+
yield row_index, {
|
373 |
+
"id": record_id,
|
374 |
+
"text": tweets,
|
375 |
+
"document_id": filepath.stem,
|
376 |
+
"labels": record_labels,
|
377 |
+
}
|
378 |
+
elif self.config.schema == "bigbio_t2t":
|
379 |
+
source_filepath, target_filepath = filepaths
|
380 |
+
|
381 |
+
source_language_code = self._language_from_filepath(source_filepath)
|
382 |
+
target_language_code = self._language_from_filepath(target_filepath)
|
383 |
+
|
384 |
+
source_df = pd.read_excel(
|
385 |
+
source_filepath,
|
386 |
+
sheet_name=f"{source_language_code}_{split}",
|
387 |
+
)[["ID", "Tweet"]]
|
388 |
+
source_df["id_int"] = source_df["ID"].str.extract(r"(\d+)").astype(int)
|
389 |
+
|
390 |
+
target_df = pd.read_excel(
|
391 |
+
target_filepath,
|
392 |
+
sheet_name=f"{target_language_code}_{split}",
|
393 |
+
)[["ID", "Tweet"]]
|
394 |
+
target_df["id_int"] = target_df["ID"].str.extract(r"(\d+)").astype(int)
|
395 |
+
|
396 |
+
df_combined = source_df.merge(
|
397 |
+
target_df, on="id_int", suffixes=("_source", "_target")
|
398 |
+
)[["id_int", "Tweet_source", "Tweet_target"]]
|
399 |
+
|
400 |
+
for row_index, record in enumerate(df_combined.itertuples(index=False)):
|
401 |
+
row = record._asdict()
|
402 |
+
yield row_index, {
|
403 |
+
"id": f"{row['id_int']}_{source_language_code}_{target_language_code}",
|
404 |
+
"document_id": f"t2t_{source_language_code}_{target_language_code}",
|
405 |
+
"text_1": row["Tweet_source"],
|
406 |
+
"text_2": row["Tweet_target"],
|
407 |
+
"text_1_name": source_language_code,
|
408 |
+
"text_2_name": target_language_code,
|
409 |
+
}
|