asahi417's picture
init
2dae5d5
raw
history blame
9.37 kB
import json
import os
import tarfile
import zipfile
import gzip
import subprocess
from os.path import join as p_join
from math import ceil, floor
from tqdm import tqdm
from multiprocessing import Pool
from typing import Optional, Dict
from glob import glob
import librosa
import pandas as pd
import soundfile as sf
from datasets import Dataset, Audio, DatasetDict
audio_loader = Audio()
# dataset config
url_metadata_dict = {
"enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz",
"enA-jpn": "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz"
}
direction = os.getenv("DIRECTION", "enA-jaA")
sides = set(direction.split("-"))
cache_dir_audio = p_join("download", "audio", direction)
cache_dir_feature = p_join("download", "feature", direction)
os.makedirs(cache_dir_feature, exist_ok=True)
for s in sides:
os.makedirs(p_join(cache_dir_audio, s), exist_ok=True)
# processor config
n_pool = int(os.getenv("N_POOL", 1))
wget_max_retry = os.getenv("MAX_RETRY", "2")
wget_timeout = os.getenv("TIMEOUT", "20")
line_no_start = int(os.getenv("LINE_NO_START", 0))
line_no_end = int(os.getenv("LINE_NO_END", 10000))
dataset_id = os.getenv("DATASET_ID", 0)
hf_org = os.getenv("HF_ORG", "asahi417")
hf_dataset = f"seamless-align-{direction}"
skip_download = bool(int(os.getenv("SKIP_DOWNLOAD", 0)))
sampling_rate = 16000 # seamless-align aligns audio in 16kHz
def wget(url: str, output_file: Optional[str] = None):
os.makedirs(os.path.dirname(output_file), exist_ok=True)
subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout])
if not os.path.exists(output_file):
return False
if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'):
if output_file.endswith('.tar'):
tar = tarfile.open(output_file)
else:
tar = tarfile.open(output_file, "r:gz")
tar.extractall(os.path.dirname(output_file))
tar.close()
os.remove(output_file)
elif output_file.endswith('.gz'):
with gzip.open(output_file, 'rb') as f:
with open(output_file.replace('.gz', ''), 'wb') as f_write:
f_write.write(f.read())
os.remove(output_file)
elif output_file.endswith('.zip'):
with zipfile.ZipFile(output_file, 'r') as zip_ref:
zip_ref.extractall()
os.remove(output_file)
return True
def get_metadata():
url_metadata = url_metadata_dict[direction]
meta_data_filename = os.path.basename(url_metadata)
meta_data_path = p_join("download", "meta", meta_data_filename)
if not os.path.exists(meta_data_path.replace(".gz", "")):
assert wget(url_metadata, output_file=meta_data_path)
df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None)
df = df[[0, 2, 3, 4, 9, 10, 11, 12]]
df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"]
if direction == "enA-jpn":
df = df[df["side"] == "enA"]
assert len(df["direction"].unique()) == 1
df.pop("direction")
return df.sort_values(by=["line_no", "side"])
def to_json_serializable(val):
if "float" in str(type(val)):
return float(val)
if "int" in str(type(val)):
return int(val)
return str(val)
def cleanup(features, feature_file):
if os.path.exists(feature_file):
os.remove(feature_file)
for _side in sides:
for _unrelated_audio_file in glob(p_join(cache_dir_audio, _side, f"{features['line_no']}.*")):
os.remove(_unrelated_audio_file)
# create a dummy so that we can skip from next run
with open(feature_file, "w") as f:
json.dump({"dummy": "dummy"}, f)
def get_audio(dataframe: pd.DataFrame):
resampler = {}
features = {"line_no": int(dataframe.pop('line_no').values[0])}
feature_file = p_join(cache_dir_feature, f'{features["line_no"]}.json')
for side, df in dataframe.groupby("side"):
df.pop("side")
features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()})
identifier = os.path.basename(features[f"{side}.url"]).split(".")[-1]
features[f"{side}.path"] = str(p_join(cache_dir_audio, side, f"{features['line_no']}.{identifier}"))
start, end = features[f"{side}.duration_start"], features[f"{side}.duration_end"]
if not os.path.exists(features[f"{side}.path"]):
print(f"WGET {features[f'{side}.url']}")
flag = wget(features[f"{side}.url"], output_file=features[f"{side}.path"])
if not flag:
print("\n#### ERROR: wget failure ####\n")
cleanup(features, feature_file)
return None
else:
try:
print(f"LOAD AUDIO FROM {features[f'{side}.path']}")
wav, sr = sf.read(features[f"{side}.path"])
print(f"wav shape:{wav.shape}")
if wav.ndim > 1:
wav = wav[:, 0]
wav = wav[floor(start / sr * sampling_rate):ceil(end / sr * sampling_rate)]
print(f"wav shape (after truncate):{wav.shape}")
# wav = wav[:int(end/sampling_rate * sr) + sr]
# if sr != sampling_rate:
# print(f"RESAMPLING: {wav.shape} length audio")
# wav = librosa.resample(wav, orig_sr=sr, target_sr=sr)
print(f"SAVING: {features[f'{side}.path']}")
sf.write(features[f"{side}.path"], wav[start:end], sr)
except Exception as e:
print(f"\n#### ERROR ####\n {e}")
cleanup(features, feature_file)
return None
print(f"\n### SUCCESS! ###\n:{features['line_no']}")
with open(feature_file, "w") as f:
json.dump(features, f)
return features["line_no"]
if __name__ == '__main__':
if not skip_download:
df_metadata = get_metadata()
print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}")
inputs = [
g for line_no, g in df_metadata.groupby("line_no")
if line_no_start <= line_no < line_no_end and not os.path.exists(
p_join(cache_dir_feature, f'{int(line_no)}.json')
)
]
print(f"filtered unique lines: {len(inputs)}")
if direction == "enA-jaA":
inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides]
print(f"removed side != 2: {len(inputs)}")
if n_pool == 1:
for g in tqdm(inputs, total=len(inputs)):
line_no = get_audio(g)
else:
with Pool(n_pool) as pool:
for line_no in pool.imap_unordered(get_audio, inputs):
if line_no:
print(line_no)
def loader(feature: str) -> Dict:
with open(feature) as f_reader:
return json.load(f_reader)
print("UPLOADING TO HF!!!")
features = [p_join(cache_dir_feature, f'{i}.json') for i in range(line_no_start, line_no_end)]
print(f"- raw feature: {len(features)}")
features = [i for i in features if os.path.exists(i)]
print(f"- path exists: {len(features)}")
features = [loader(i) for i in features]
features = [i for i in features if "dummy" not in i]
print(f"- dummy removed: {len(features)}")
print(f"push {len(features)} records to hub")
data_dict = {}
for side in sides:
data_dict.update({f"{side}.audio": [i.pop(f"{side}.path") for i in features]})
data_dict.update({k: [i[k] for i in features] for k in features[0].keys()})
audio_dataset = Dataset.from_dict(data_dict)
for side in sides:
audio_dataset = audio_dataset.cast_column(f"{side}.audio", Audio())
DatasetDict({"train": audio_dataset}).push_to_hub(
f"{hf_org}/{hf_dataset}",
config_name=f"subset_{dataset_id}"
)
# DatasetDict({"train": audio_dataset.select(list(range(1000)))}).push_to_hub(
# f"{hf_org}/{hf_dataset}",
# config_name=f"subset_{dataset_id}"
# )
# # 2 panel
# dataset_id = 75
# DatasetDict({"train": audio_dataset.select(list(range(3000, len(audio_dataset))))}).push_to_hub(
# f"{hf_org}/{hf_dataset}",
# config_name=f"subset_{dataset_id}"
# )
#
#
# audio_dataset = audio_dataset.select(list(range(2500)))
# dataset_to_push = DatasetDict({"train": audio_dataset})
# repo_name = f"{hf_org}/{hf_dataset}"
# dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
# dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}", max_shard_size="2GiB")
# dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}", num_shards={"train": 1})
# while True:
# try:
# dataset_to_push.push_to_hub(repo_name, config_name=f"subset_{dataset_id}")
# break
# except Exception:
# print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...")
# time.sleep(60)